More Notebook howtos on

Acer Aspire 5012Lmi install howto

By Markus Weissbacher 2006

This Document is about the configuration of my Acer 5012Lmi
Notebook I write this, because I didn't found a complete instruction on the
internet. Sry for my poor english by the way, but I decidet to write this in
english to make it useful to everybody.
You can contact me at w e i s s b a c h e r @ g m a i l . c o m .
If you have any suggestions just mail me.

This howto has been updated at last on 03.09.2007 and I guess
it is for the last time, because I'm about to sell my notebook

But anyway don't forget to check the end of this document, I
added very specific tweaks to the bottom which are very helpful
and I needed a long time to get it running this way.

To have a good reference I just copied the gentoo handbook and editet
what has to be modified for this hardware.

Gentoo amd64 2006.1 install guide

Gentoo Logo

Gentoo Linux AMD64 Handbook


  • Installing Gentoo
    In this part you learn how to install Gentoo on your system.
    1. About the Gentoo Linux Installation
      This chapter introduces you to the installation approach documented in this handbook.
    2. Choosing the Right Installation Medium
      . You can install Gentoo in many ways. This chapter explains how to install Gentoo using the minimal Installation CD although installation through the Installer LiveCD is possible as well.
    3. Configuring your Network
      To be able to download the latest source code, you will need to setup networking.
    4. Preparing the Disks
      To be able to install Gentoo, you must create the necessary partitions. This chapter describes how to partition a disk for future usage.
    5. Installing the Gentoo Installation Files
      Gentoo installs work through a stage3 archive. In this chapter we describe how you extract the stage3 archive and configure Portage.
    6. Installing the Gentoo Base System
      After installing and configuring a stage3, the eventual result is that you have a Gentoo base system at your disposal. This chapter describes how to progress to that state.
    7. Configuring the Kernel
      The Linux kernel is the core of every distribution. This chapter explains how to configure your kernel.
    8. Configuring your System
      You need to edit some important configuration files. In this chapter you receive an overview of these files and an explanation on how to proceed.
    9. Installing Necessary System Tools
      As mentioned before, Gentoo is about choices. In this chapter we help you choose and install some important tools.
    10. Configuring the Bootloader
      In this chapter we'll describe the GRUB bootloader and step you through the process of configuring GRUB to your needs.
    11. Finalizing your Gentoo Installation
      You're almost done. We'll just create one (or more) users for your system.
    12. Where to go from here?
      Now you have your Gentoo system, but what's next?
  • Working with Gentoo
    Learn how to work with Gentoo: installing software, altering variables, changing Portage behaviour etc.
    1. A Portage Introduction
      This chapter explains the "simple" steps a user definitely needs to know to maintain the software on his system.
    2. USE flags
      USE-flags are a very important aspect of Gentoo. In this chapter, you learn to work with USE-flags and understand how USE-flags interact with your system.
    3. Portage Features
      Discover the features Portage has, such as support for distributed compiling, ccache and more.
    4. Initscripts
      Gentoo uses a special initscript format which, amongst other features, allows dependency-driven decisions and virtual initscripts. This chapter explains all these aspects and explains how to deal with these scripts.
    5. Environment Variables
      With Gentoo you can easily manage the environment variables for your system. This chapter explains how you do that, and also describes frequently used variables.
  • Working with Portage
    "Working with Portage" provides an in-depth coverage of Portage, Gentoo's Software Management Tool.
    1. Files and Directories
      Once you want to know Portage in-depth you need to know where it stores its files and data.
    2. Configuring through Variables
      Portage is completely configurable through various variables you can set in the configuration file or as environment variable.
    3. Mixing Software Branches
      Gentoo provides software separated in several branches, depending on stability and architectural support. "Mixing Software Branches" inform you how these branches can be configured and how you can override this separation individually.
    4. Additional Portage Tools
      Portage comes with a few extra tools that might make your Gentoo experience even better. Read on to discover how to use dispatch-conf and other tools.
    5. Diverting from the Official Tree
      "Diverting from the Official Tree" gives you some tips and tricks on how to use your own Portage tree, how to synchronise only the categories you want, inject packages and more.
  • Gentoo Network Configuration
    A comprehensive guide to Networking in Gentoo.
    1. Getting Started
      . A guide to quickly get your network interface up and running in most common environments.
    2. Advanced Configuration
      Here we learn about how the configuration works - you need to know this before we learn about modular networking.
    3. Modular Networking
      Gentoo provides you flexible networking - here you are told about choosing different DHCP clients, setting up bonding, bridging, VLANs and more.
    4. Wireless Networking
      Wireless isn't straight-forward. Hopefully we'll get you working!
    5. Adding Functionality
      If you're feeling adventurous, you can add your own functions to networking.
    6. Network Management
      For laptop users or people who move their computer around different networks.

A. Installing Gentoo

1. About the Gentoo Linux Installation

1.a. Introduction


First of all, welcome to Gentoo. You are about to enter the world of choices and performance. Gentoo is all about choices. When installing Gentoo, this is made clear to you several times -- you can choose how much you want to compile yourself, how to install Gentoo, what system logger you want, etc.

Gentoo is a fast, modern metadistribution with a clean and flexible design. Gentoo is built around free software and doesn't hide from its users what is beneath the hood. Portage, the package maintenance system which Gentoo uses, is written in Python, meaning you can easily view and modify the source code. Gentoo's packaging system uses source code (although support for precompiled packages is included too) and configuring Gentoo happens through regular textfiles. In other words, openness everywhere.

It is very important that you understand that choices are what makes Gentoo run. We try not to force you onto anything you don't like. If you feel like we do, please bugreport it.

How is the Installation Structured?

The Gentoo Installation can be seen as a 10-step procedure, corresponding to chapters 2 - 11. Every step results in a certain state:

  • After step 1, you are in a working environment ready to install Gentoo
  • After step 2, your internet connection is ready to install Gentoo
  • After step 3, your hard disks are initialized to house your Gentoo installation
  • After step 4, your installation environment is prepared and you are ready to chroot into the new environment
  • After step 5, core packages, which are the same on all Gentoo installations, are installed
  • After step 6, you have compiled your Linux kernel
  • After step 7, you have written most of your Gentoo system configuration files
  • After step 8, necessary system tools (which you can choose from a nice list) are installed
  • After step 9, your choice of bootloader has been installed and configured and you are logged in into your new Gentoo installation
  • After step 10, your Gentoo Linux environment is ready to be explored

When you are given a certain choice, we try our best to explain what the pros and cons are. We will continue then with a default choice, identified by "Default: " in the title. The other possibilities are marked by "Alternative: ". Do not think that the default is what we recommend. It is however what we believe most users will use.

Sometimes you can pursue an optional step. Such steps are marked as "Optional: " and are therefore not needed to install Gentoo. However, some optional steps are dependant on a previous decision you made. We will inform you when this happens, both when you make the decision, and right before the optional step is described.

What are my Options?

You can install Gentoo in many different ways. You can download and install from one of our Installation CDs, from an existing distribution, from a bootable CD (such as Knoppix), from a netbooted environment, from a rescue floppy, etc.

This document covers the installation using a Gentoo Installation CD or, in certain cases, NetBooting. This installation assumes that you want to install the latest available version of each package. If you want to perform a networkless installation, you should read the Gentoo 2006.1 Handbooks which contain the installation instructions for a networkless environment.

Also note that, if you plan on using GRP (the Gentoo Reference Platform, a collection of prebuilt packages meant for immediate use after a Gentoo installation), you must follow the instructions in the Gentoo 2006.1 Handbooks.

For help on the other installation approaches, please read our Alternative Installation Guide. We also provide a Gentoo Installation Tips & Tricks document that might be useful to read as well. If you feel that the current installation instructions are too elaborate, feel free to use our Quick Installation Guide available from our Documentation Resources if your architecture has such a document available.

You also have several possibilities: you can compile your entire system from scratch or use a prebuilt environment to have your Gentoo environment up and running in no time. And of course you have intermediate solutions in which you don't compile everything but start from a semi-ready system.


If you find a problem in the installation (or in the installation documentation), please visit our bugtracking system and check if the bug is known. If not, please create a bugreport for it so we can take care of it. Do not be afraid of the developers who are assigned to (your) bugs -- they generally don't eat people.

Note though that, although the document you are now reading is architecture-specific, it will contain references to other architectures as well. This is due to the fact that large parts of the Gentoo Handbook use source code that is common for all architectures (to avoid duplication of efforts and starvation of development resources). We will try to keep this to a minimum to avoid confusion.

If you are uncertain if the problem is a user-problem (some error you made despite having read the documentation carefully) or a software-problem (some error we made despite having tested the installation/documentation carefully) you are free to join #gentoo on Of course, you are welcome otherwise too :)

If you have a question regarding Gentoo, check out our Frequently Asked Questions, available from the Gentoo Documentation. You can also view the FAQs on our forums. If you can't find the answer there ask on #gentoo, our IRC-channel on Yes, several of us are freaks who sit on IRC :-)

2. Choosing the Right Installation Medium

2.a. Hardware Requirements


Before we start, we first list what hardware requirements you need to successfully install Gentoo on your box.

Hardware Requirements

Memory 64 MB
Diskspace 1.5 GB (excluding swap space)
Swap space At least 256 MB

You should check the Gentoo AMD64 Project Page before proceeding.

2.b. The Gentoo Installation CDs


The Gentoo Installation CDs are bootable CDs which contain a self-sustained Gentoo environment. They allow you to boot Linux from the CD. During the boot process your hardware is detected and the appropriate drivers are loaded. They are maintained by Gentoo developers.

All Installation CDs allow you to boot, set up networking, initialize your partitions and start installing Gentoo from the Internet. We currently provide two Installation CDs which are equaly suitable to install Gentoo from, as long as you're planning on performing an Internet-based installation using the latest version of the available packages.

Important: If you wish to install Gentoo without a working Internet connection, or would like to use one of the provided installers, please use the installation instructions described in the Gentoo 2006.1 Handbooks.

The Installation CDs that we currently provide are:

  • The Gentoo Minimal Installation CD, a small, no-nonsense, bootable CD which sole purpose is to boot the system, prepare the networking and continue with the Gentoo installation.
  • The Gentoo Installer LiveCD contains everything you need to install Gentoo. It provides a graphical environment, a graphical as well as console based installer which automatically carries out the installation for you, and of course, the installation instructions for your architecture.

To help you decide which Installation CD you need, we have written down the major advantages and disadvantages of each Installation CD.

Gentoo Minimal Installation CD

The Minimal Installation CD is called install-amd64-minimal-2006.1.iso and takes up only 50 MB of diskspace. You can use this Installation CD to install Gentoo, but only with a working Internet connection.

Minimal Installation CD Pros and Cons
+ Smallest download
- Contains no stage3 tarball, no Portage snapshot, no prebuilt packages and is therefore not suitable for networkless installation

Gentoo Installer LiveCD

The Installer LiveCD is called livecd-amd64-installer-2006.1.iso and takes up 696 MB. You can use this Installation CD to install Gentoo, and you can even use it to install Gentoo without a working internet connection, just in case you want to bring Gentoo to another PC than the one you are currently installing Gentoo on.

Installer LiveCD Pros and Cons
+ Contains everything you need. You can even install without a network connection.
- Huge download

The Stage3 Tarball

A stage3 tarball is an archive containing a minimal Gentoo environment, suitable to continue the Gentoo installation using the instructions in this manual. Previously, the Gentoo Handbook described the installation using one of three stage tarballs. While Gentoo still offers stage1 and stage2 tarballs, the official installation method uses the stage3 tarball. If you are interested in performing a Gentoo installation using a stage1 or stage2 tarball, please read the Gentoo FAQ on How do I Install Gentoo Using a Stage1 or Stage2 Tarball?

Stage3 tarballs can be downloaded from releases/amd64/2006.1/stages/ on any of the Official Gentoo Mirrors and are not provided on the LiveCD.

2.c. Download, Burn and Boot a Gentoo Installation CD

Downloading and Burning the Installation CDs

You have chosen to use a Gentoo Installation CD. We'll first start by downloading and burning the chosen Installation CD. We previously discussed the several available Installation CDs, but where can you find them?

You can download any of the Installation CDs from one of our mirrors. The Installation CDs are located in the releases/amd64/2006.1/installcd/ directory.

Inside that directory you'll find ISO-files. Those are full CD images which you can write on a CD-R.

In case you wonder if your downloaded file is corrupted or not, you can check its MD5 checksum and compare it with the MD5 checksum we provide (such as install-amd64-minimal-2006.1.iso.DIGESTS). You can check the MD5 checksum with the md5sum tool under Linux/Unix or md5sum for Windows.

Another way to check the validity of the downloaded file is to use GnuPG to verify the cryptographic signature that we provide (the file ending with .asc). Download the signature file and obtain the public key:

Code Listing 1: Obtaining the public key

$ gpg --keyserver --recv-keys 17072058

Now verify the signature:

Code Listing 2: Verify the cryptographic signature

$ gpg --verify <signature file> <downloaded iso>

To burn the downloaded ISO(s), you have to select raw-burning. How you do this is highly program-dependent. We will discuss cdrecord and K3B here; more information can be found in our Gentoo FAQ.

  • With cdrecord, you simply type cdrecord dev=/dev/hdc <downloaded iso file> (replace /dev/hdc with your CD-RW drive's device path).
  • With K3B, select Tools > CD > Burn Image. Then you can locate your ISO file within the 'Image to Burn' area. Finally click Start.

Booting the Installation CD

Once you have burnt your installation CD, it is time to boot it. Remove all CDs from your CD drives, reboot your system and enter the BIOS. This is usually done by hitting DEL, F1 or ESC, depending on your BIOS. Inside the BIOS, change the boot order so that the CD-ROM is tried before the hard disk. This is often found under "CMOS Setup". If you don't do this, your system will just reboot from the hard disk, ignoring the CD-ROM.

Now place the installation CD in the CD-ROM drive and reboot. You should see a boot prompt. At this screen, you can hit Enter to begin the boot process with the default boot options, or boot the Installation CD with custom boot options by specifying a kernel followed by boot options and then hitting Enter.

Specifying a kernel? Yes, we provide several kernels on our Installation CDs. The default one is gentoo. Other kernels are for specific hardware needs and the -nofb variants which disable framebuffer.

Below you'll find a short overview on the available kernels:

Kernel Description
gentoo Default kernel with support for K8 CPUs (including NUMA support) and EM64T CPUs
memtest86 Test your local RAM for errors

You can also provide kernel options. They represent optional settings you can (de)activate at will. The following list is the same as the one you receive when you press F2 at the bootscreen.

Code Listing 3: Options available to pass to your kernel of choice

- agpgart       loads agpgart (use if you have graphic problems,lockups)
- acpi=on       loads support for ACPI firmware
- ide=nodma     force disabling of DMA for malfunctioning IDE devices
- doscsi        scan for scsi devices (breaks some ethernet cards)
- dopcmcia      starts pcmcia service for PCMCIA cdroms
- nofirewire    disables firewire modules in initrd (for firewire cdroms,etc)
- nokeymap      disables keymap selection for non-us keyboard layouts
- docache       cache the entire runtime portion of cd in RAM, allows you
                to umount /mnt/cdrom to mount another cdrom.
- nodetect      causes hwsetup/kudzu and hotplug not to run
- nousb         disables usb module load from initrd, disables hotplug
- nodhcp        dhcp does not automatically start if nic detected
- nohotplug     disables loading hotplug service
- noapic        disable apic (try if having hardware problems nics,scsi,etc)
- noevms        disable loading of EVMS2 modules
- nolvm2        disable loading of LVM2 modules
- hdx=stroke    allows you to partition the whole harddrive even when your BIOS
                can't handle large harddrives
- noload=module1,[module2,[...]]
                disable loading of specific kernel modules

Now boot your CD, select a kernel (if you are not happy with the default gentoo kernel) and boot options. As an example, we show you how to boot the gentoo kernel, with dopcmcia as kernel parameters:

Code Listing 4: Booting an Installation CD

boot: gentoo dopcmcia

You will then be greeted with a boot screen and progress bar. If you are installing Gentoo on a system with a non-US keyboard, make sure you immediately press Alt-F1 to switch to verbose mode and follow the prompt. If no selection is made in 10 seconds the default (US keyboard) will be accepted and the boot process will continue. Once the boot process completes, you will be automatically logged in to the "Live" Gentoo Linux as "root", the super user. You should have a root ("#") prompt on the current console and can also switch to other consoles by pressing Alt-F2, Alt-F3 and Alt-F4. Get back to the one you started on by pressing Alt-F1.

Now continue with Extra Hardware Configuration.

Extra Hardware Configuration

When the Installation CD boots, it tries to detect all your hardware devices and loads the appropriate kernel modules to support your hardware. In the vast majority of cases, it does a very good job. However, in some cases it may not auto-load the kernel modules you need. If the PCI auto-detection missed some of your system's hardware, you will have to load the appropriate kernel modules manually.

In the next example we try to load the 8139too module (support for certain kinds of network interfaces):

Code Listing 5: Loading kernel modules

# modprobe 8139too

If you need PCMCIA support, you should start the pcmcia init script:

Code Listing 6: Starting the PCMCIA init script

# /etc/init.d/pcmcia start

Optional: Tweaking Hard Disk Performance

If you are an advanced user, you might want to tweak the IDE hard disk performance using hdparm. With the -tT options you can test the performance of your disk (execute it several times to get a more precise impression):

Code Listing 7: Testing disk performance

# hdparm -tT /dev/hda

To tweak, you can use any of the following examples (or experiment yourself) which use /dev/hda as disk (substitute with your disk):

Code Listing 8: Tweaking hard disk performance

(Activate DMA:)
# hdparm -d 1 /dev/hda

(Activate Safe Performance Options:)
# hdparm -d 1 -A 1 -m 16 -u 1 -a 64 /dev/hda

Optional: User Accounts

If you plan on giving other people access to your installation environment or you want to chat using irssi without root privileges (for security reasons), you need to create the necessary user accounts and change the root password.

To change the root password, use the passwd utility:

Code Listing 9: Changing the root password

# passwd
New password: (Enter your new password)
Re-enter password: (Re-enter your password)

To create a user account, we first enter their credentials, followed by its password. We use useradd and passwd for these tasks. In the next example, we create a user called "john".

Code Listing 10: Creating a user account

# useradd -m -G users john
# passwd john
New password: (Enter john's password)
Re-enter password: (Re-enter john's password)

You can change your user id from root to the newly created user by using su:

Code Listing 11: Changing user id

# su - john

Optional: Viewing Documentation while Installing

If you want to view the Gentoo Handbook (either from-CD or online) during the installation, make sure you have created a user account (see Optional: User Accounts). Then press Alt-F2 to go to a new terminal and log in.

If you want to view the documentation on the CD you can immediately run links to read it:

Code Listing 12: Viewing the on-CD documentation

# links /mnt/cdrom/docs/html/index.html

However, it is preferred that you use the online Gentoo Handbook as it will be more recent than the one provided on the CD. You can view it using links as well, but only after having completed the Configuring your Network chapter (otherwise you won't be able to go on the Internet to view the document):

Code Listing 13: Viewing the Online Documentation

# links

You can go back to your original terminal by pressing Alt-F1.

Optional: Starting the SSH Daemon

If you want to allow other users to access your computer during the Gentoo installation (perhaps because those users are going to help you install Gentoo, or even do it for you), you need to create a user account for them and perhaps even provide them with your root password (only do that if you fully trust that user).

To fire up the SSH daemon, execute the following command:

Code Listing 14: Starting the SSH daemon

# /etc/init.d/sshd start

To be able to use sshd, you first need to set up your networking. Continue with the chapter on Configuring your Network.

3. Configuring your Network

3.a. Automatic Network Detection

Maybe it just works?

If your system is plugged into an Ethernet network with a DHCP server, it is very likely that your networking configuration has already been set up automatically for you. If so, you should be able to take advantage of the many included network-aware commands on the Installation CD such as ssh, scp, ping, irssi, wget and links, among others.

If networking has been configured for you, the /sbin/ifconfig command should list some network interfaces besides lo, such as eth0:

Code Listing 1: /sbin/ifconfig for a working network configuration

# /sbin/ifconfig

eth0      Link encap:Ethernet  HWaddr 00:50:BA:8F:61:7A
          inet addr:  Bcast:  Mask:
          inet6 addr: fe80::50:ba8f:617a/10 Scope:Link
          RX packets:1498792 errors:0 dropped:0 overruns:0 frame:0
          TX packets:1284980 errors:0 dropped:0 overruns:0 carrier:0
          collisions:1984 txqueuelen:100
          RX bytes:485691215 (463.1 Mb)  TX bytes:123951388 (118.2 Mb)
          Interrupt:11 Base address:0xe800 

Optional: Configure any Proxies

If you access the Internet through a proxy, you might need to set up proxy information during the installation. It is very easy to define a proxy: you just need to define a variable which contains the proxy server information.

In most cases, you can just define the variables using the server hostname. As an example, we assume the proxy is called and the port is 8080.

Code Listing 2: Defining proxy servers

(If the proxy filters HTTP traffic)
# export http_proxy=""
(If the proxy filters FTP traffic)
# export ftp_proxy=""
(If the proxy filters RSYNC traffic)

# export RSYNC_PROXY=""

If your proxy requires a username and password, you should use the following syntax for the variable:

Code Listing 3: Adding username/password to the proxy variable

Testing the Network

You may want to try pinging your ISP's DNS server (found in /etc/resolv.conf) and a Web site of your choice, just to make sure that your packets are reaching the net, DNS name resolution is working correctly, etc.

Code Listing 4: Further network testing

# ping -c 3

If you are now able to use your network, you can skip the rest of this section and continue with Preparing the Disks. If not, read on.

3.b. Automatic Network Configuration

If the network doesn't work immediately, some installation media allow you to use net-setup (for regular or wireless networks), pppoe-setup (for ADSL-users) or pptp (for PPTP-users - available on x86, amd64, alpha, ppc and ppc64).

If your installation medium does not contain any of these tools or your network doesn't function yet, continue with Manual Network Configuration.

Default: Using net-setup

The simplest way to set up networking if it didn't get configured automatically is to run the net-setup script:

Code Listing 5: Running the net-setup script

# net-setup eth0

net-setup will ask you some questions about your network environment. When all is done, you should have a working network connection. Test your network connection as stated before. If the tests are positive, congratulations! You are now ready to install Gentoo. Skip the rest of this section and continue with Preparing the Disks.

If your network still doesn't work, continue with Manual Network Configuration.

Alternative: Using RP-PPPoE

Assuming you need PPPoE to connect to the internet, the Installation CD (any version) has made things easy for you by including rp-pppoe. Use the provided pppoe-setup script to configure your connection. You will be prompted for the ethernet device that is connected to your adsl modem, your username and password, the IPs of your DNS servers and if you need a basic firewall or not.

Code Listing 6: Using rp-pppoe

# pppoe-setup
# pppoe-start

If something goes wrong, double-check that you correctly typed your username and password by looking at /etc/ppp/pap-secrets or /etc/ppp/chap-secrets and make sure you are using the right ethernet device. If your ethernet device doesn't exist, you will have to load the appropriate network modules. In that case you should continue with Manual Network Configuration as we explain how to load the appropriate network modules there.

If everything worked, continue with Preparing the Disks.

Alternative: Using PPTP

Note: PPTP support is only available for x86

If you need PPTP support, you can use pptpclient which is provided by our Installation CDs. But first you need to make sure that your configuration is correct. Edit /etc/ppp/pap-secrets or /etc/ppp/chap-secrets so it contains the correct username/password combination:

Code Listing 7: Editing /etc/ppp/chap-secrets

# nano -w /etc/ppp/chap-secrets

Then adjust /etc/ppp/options.pptp if necessary:

Code Listing 8: Editing /etc/ppp/options.pptp

# nano -w /etc/ppp/options.pptp

When all that is done, just run pptp (along with the options you couldn't set in options.pptp) to connect the server:

Code Listing 9: Connection to a dial-in server

# pptp <server ip>

Now continue with Preparing the Disks.

3.c. Manual Network Configuration

Loading the Appropriate Network Modules

When the Installation CD boots, it tries to detect all your hardware devices and loads the appropriate kernel modules (drivers) to support your hardware. In the vast majority of cases, it does a very good job. However, in some cases, it may not auto-load the kernel modules you need.

If net-setup or pppoe-setup failed, then it is possible that your network card wasn't found immediately. This means you may have to load the appropriate kernel modules manually.

To find out what kernel modules we provide for networking, use ls:

Code Listing 10: Searching for provided modules

# ls /lib/modules/`uname -r`/kernel/drivers/net

If you find a driver for your network card, use modprobe to load the kernel module:

Code Listing 11: Using modprobe to load a kernel module

(As an example, we load the pcnet32 module)
# modprobe pcnet32

To check if your network card is now detected, use ifconfig. A detected network card would result in something like this:

Code Listing 12: Testing availability of your network card, successful

# ifconfig eth0
eth0      Link encap:Ethernet  HWaddr FE:FD:00:00:00:00  
          BROADCAST NOARP MULTICAST  MTU:1500  Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0 
          RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b)

If however you receive the following error, the network card is not detected:

Code Listing 13: Testing availability of your network card, failed

# ifconfig eth0
eth0: error fetching interface information: Device not found

If you have multiple network cards in your system they are named eth0, eth1, etc. Make sure that the network card you want to use works well and remember to use the correct naming throughout this document. We will assume that the network card eth0 is used.

Assuming that you now have a detected network card, you can retry net-setup or pppoe-setup again (which should work now), but for the hardcore people amongst you we explain how to configure your network manually.

Select one of the following sections based on your network setup:

Using DHCP

DHCP (Dynamic Host Configuration Protocol) makes it possible to automatically receive networking information (IP address, netmask, broadcast address, gateway, nameservers etc.). This only works if you have a DHCP server in your network (or if your provider provides a DHCP service). To have a network interface receive this information automatically, use dhcpcd:

Code Listing 14: Using dhcpcd

# dhcpcd eth0
Some network admins require that you use the
hostname and domainname provided by the DHCP server.

In that case, use
# dhcpcd -HD eth0

If this works (try pinging some internet server, like Google), then you are all set and ready to continue. Skip the rest of this section and continue with Preparing the Disks.

Preparing for Wireless Access

Note: Support for the iwconfig command is only available on x86, amd64 and ppc Installation CDs. You can still get the extensions working otherwise by following the instructions of the linux-wlan-ng project.

If you are using a wireless (802.11) card, you may need to configure your wireless settings before going any further. To see the current wireless settings on your card, you can use iwconfig. Running iwconfig might show something like:

Code Listing 15: Showing the current wireless settings

# iwconfig eth0
eth0      IEEE 802.11-DS  ESSID:"GentooNode"                                   
          Mode:Managed  Frequency:2.442GHz  Access Point: 00:09:5B:11:CC:F2    
          Bit Rate:11Mb/s   Tx-Power=20 dBm   Sensitivity=0/65535               
          Retry limit:16   RTS thr:off   Fragment thr:off                       
          Power Management:off                                                  
          Link Quality:25/10  Signal level:-51 dBm  Noise level:-102 dBm        
          Rx invalid nwid:5901 Rx invalid crypt:0 Rx invalid frag:0 Tx          
          excessive retries:237 Invalid misc:350282 Missed beacon:84            

Note: Some wireless cards may have a device name of wlan0 or ra0 instead of eth0. Run iwconfig without any command-line parameters to determine the correct device name.

For most users, there are only two settings that might be important to change, the ESSID (aka wireless network name) or the WEP key. If the ESSID and Access Point address listed are already that of your access point and you are not using WEP, then your wireless is working. If you need to change your ESSID, or add a WEP key, you can issue the following commands:

Code Listing 16: Changing ESSID and/or adding WEP key

(This sets the network name to "GentooNode")
# iwconfig eth0 essid GentooNode

(This sets a hex WEP key)

# iwconfig eth0 key 1234123412341234abcd

(This sets an ASCII key - prefix it with "s:")
# iwconfig eth0 key s:some-password

You can then confirm your wireless settings again by using iwconfig. Once you have wireless working, you can continue configuring the IP level networking options as described in the next section (Understanding Network Terminology) or use the net-setup tool as described previously.

Understanding Network Terminology

Note: If you know your IP address, broadcast address, netmask and nameservers, then you can skip this subsection and continue with Using ifconfig and route.

If all of the above fails, you will have to configure your network manually. This is not difficult at all. However, you need to be familiar with some network terminology, as you will need it to be able to configure your network to your satisfaction. After reading this, you will know what a gateway is, what a netmask serves for, how a broadcast address is formed and why you need nameservers.

In a network, hosts are identified by their IP address (Internet Protocol address). Such an address is a combination of four numbers between 0 and 255. Well, at least that is how we perceive it. In reality, such an IP address consists of 32 bits (ones and zeros). Let's view an example:

Code Listing 17: Example of an IP address

IP Address (numbers):
IP Address (bits):      11000000 10101000 00000000 00000010
                        -------- -------- -------- --------
                           192      168       0        2

Such an IP address is unique to a host as far as all accessible networks are concerned (i.e. every host that you are able to reach must have a unique IP address). In order to distinguish between hosts inside and outside a network, the IP address is divided in two parts: the network part and the host part.

The separation is written down with the netmask, a collection of ones followed by a collection of zeros. The part of the IP that can be mapped on the ones is the network-part, the other one is the host-part. As usual, the netmask can be written down as an IP-address.

Code Listing 18: Example of network/host separation

IP-address:    192      168      0         2
            11000000 10101000 00000000 00000010
Netmask:    11111111 11111111 11111111 00000000
               255      255     255        0
                    Network              Host

In other words, is still part of our example network, but is not.

The broadcast address is an IP-address with the same network-part as your network, but with only ones as host-part. Every host on your network listens to this IP address. It is truly meant for broadcasting packets.

Code Listing 19: Broadcast address

IP-address:    192      168      0         2
            11000000 10101000 00000000 00000010
Broadcast:  11000000 10101000 00000000 11111111
               192      168      0        255
                     Network             Host

To be able to surf on the internet, you must know which host shares the Internet connection. This host is called the gateway. Since it is a regular host, it has a regular IP address (for instance

We previously stated that every host has its own IP address. To be able to reach this host by a name (instead of an IP address) you need a service that translates a name (such as to an IP address (such as Such a service is called a name service. To use such a service, you must define the necessary name servers in /etc/resolv.conf.

In some cases, your gateway also serves as nameserver. Otherwise you will have to enter the nameservers provided by your ISP.

To summarise, you will need the following information before continuing:

Network Item Example
Your IP address

Using ifconfig and route

Setting up your network consists of three steps. First we assign ourselves an IP address using ifconfig. Then we set up routing to the gateway using route. Then we finish up by placing the nameserver IPs in /etc/resolv.conf.

To assign an IP address, you will need your IP address, broadcast address and netmask. Then execute the following command, substituting ${IP_ADDR} with your IP address, ${BROADCAST} with your broadcast address and ${NETMASK} with your netmask:

Code Listing 20: Using ifconfig

# ifconfig eth0 ${IP_ADDR} broadcast ${BROADCAST} netmask ${NETMASK} up

Now set up routing using route. Substitute ${GATEWAY} with your gateway IP address:

Code Listing 21: Using route

# route add default gw ${GATEWAY}

Now open /etc/resolv.conf with your favorite editor (in our example, we use nano):

Code Listing 22: Creating /etc/resolv.conf

# nano -w /etc/resolv.conf

Now fill in your nameserver(s) using the following as a template. Make sure you substitute ${NAMESERVER1} and ${NAMESERVER2} with the appropriate nameserver addresses:

Code Listing 23: /etc/resolv.conf template

nameserver ${NAMESERVER1}
nameserver ${NAMESERVER2}

That's it. Now test your network by pinging some Internet server (like Google). If this works, congratulations then. You are now ready to install Gentoo. Continue with Preparing the Disks.

4. Preparing the Disks

4.a. Introduction to Block Devices

Block Devices

We'll take a good look at disk-oriented aspects of Gentoo Linux and Linux in general, including Linux filesystems, partitions and block devices. Then, once you're familiar with the ins and outs of disks and filesystems, you'll be guided through the process of setting up partitions and filesystems for your Gentoo Linux installation.

To begin, we'll introduce block devices. The most famous block device is probably the one that represents the first IDE drive in a Linux system, namely /dev/hda. If your system uses SCSI or SATA drives, then your first hard drive would be /dev/sda.

The block devices above represent an abstract interface to the disk. User programs can use these block devices to interact with your disk without worrying about whether your drives are IDE, SCSI or something else. The program can simply address the storage on the disk as a bunch of contiguous, randomly-accessible 512-byte blocks.


Although it is theoretically possible to use a full disk to house your Linux system, this is almost never done in practice. Instead, full disk block devices are split up in smaller, more manageable block devices. On AMD64 systems, these are called partitions.

Partitions are divided in three types: primary, extended and logical.

A primary partition is a partition which has its information stored in the MBR (master boot record). As an MBR is very small (512 bytes) only four primary partitions can be defined (for instance, /dev/hda1 to /dev/hda4).

An extended partition is a special primary partition (meaning the extended partition must be one of the four possible primary partitions) which contains more partitions. Such a partition didn't exist originally, but as four partitions were too few, it was brought to life to extend the formatting scheme without losing backward compatibility.

A logical partition is a partition inside the extended partition. Their definitions aren't placed inside the MBR, but are declared inside the extended partition.

Advanced Storage

The AMD64 Installation CDs provide support for EVMS and LVM2. EVMS and LVM2 increase the flexibility offered by your partitioning setup. During the installation instructions, we will focus on "regular" partitions, but it is still good to know EVMS and LVM2 are supported as well.

4.b. Designing a Partitioning Scheme

Default Partitioning Scheme

If you are not interested in drawing up a partitioning scheme for your system, you can use the partitioning scheme we use throughout this book:

Partition Filesystem Size Description
/dev/hda1 ext2 32M Boot partition
/dev/hda2 (swap) 512M Swap partition
/dev/hda3 ext3 Rest of the disk Root partition

If you are interested in knowing how big a partition should be, or even how many partitions you need, read on. Otherwise continue now with partitioning your disk by reading Using fdisk to Partition your Disk.

How Many and How Big?

The number of partitions is highly dependent on your environment. For instance, if you have lots of users, you will most likely want to have your /home separate as it increases security and makes backups easier. If you are installing Gentoo to perform as a mailserver, your /var should be separate as all mails are stored inside /var. A good choice of filesystem will then maximise your performance. Gameservers will have a separate /opt as most gaming servers are installed there. The reason is similar for /home: security and backups. You will definitely want to keep /usr big: not only will it contain the majority of applications, the Portage tree alone takes around 500 Mbyte excluding the various sources that are stored in it.

As you can see, it very much depends on what you want to achieve. Separate partitions or volumes have the following advantages:

  • You can choose the best performing filesystem for each partition or volume
  • Your entire system cannot run out of free space if one defunct tool is continuously writing files to a partition or volume
  • If necessary, file system checks are reduced in time, as multiple checks can be done in parallel (although this advantage is more with multiple disks than it is with multiple partitions)
  • Security can be enhanced by mounting some partitions or volumes read-only, nosuid (setuid bits are ignored), noexec (executable bits are ignored) etc.

However, multiple partitions have one big disadvantage: if not configured properly, you might result in having a system with lots of free space on one partition and none on another. There is also a 15-partition limit for SCSI and SATA.

As an example partitioning, we show you one for a 20GB disk, used as a demonstration laptop (containing webserver, mailserver, gnome, ...):

Code Listing 1: Filesystem usage example

$ df -h
Filesystem    Type    Size  Used Avail Use% Mounted on
/dev/hda5     ext3    509M  132M  351M  28% /
/dev/hda2     ext3    5.0G  3.0G  1.8G  63% /home
/dev/hda7     ext3    7.9G  6.2G  1.3G  83% /usr
/dev/hda8     ext3   1011M  483M  477M  51% /opt
/dev/hda9     ext3    2.0G  607M  1.3G  32% /var
/dev/hda1     ext2     51M   17M   31M  36% /boot
/dev/hda6     swap    516M   12M  504M   2% <not mounted>
(Unpartitioned space for future usage: 2 GB)

/usr is rather full (83% used) here, but once all software is installed, /usr doesn't tend to grow that much. Although allocating a few gigabytes of disk space for /var may seem excessive, remember that Portage uses this partition by default for compiling packages. If you want to keep /var at a more reasonable size, such as 1GB, you will need to alter your PORTAGE_TMPDIR variable in /etc/make.conf to point to the partition with enough free space for compiling extremely large packages such as OpenOffice.

4.c. Using fdisk to Partition your Disk

The following parts explain how to create the example partition layout described previously, namely:

Partition Description
/dev/hda1 Boot partition
/dev/hda2 Swap partition
/dev/hda3 Root partition

Change your partition layout according to your own preference.

Viewing the Current Partition Layout

fdisk is a popular and powerful tool to split your disk into partitions. Fire up fdisk on your disk (in our example, we use /dev/hda):

Code Listing 2: Starting fdisk

# fdisk /dev/hda

Once in fdisk, you'll be greeted with a prompt that looks like this:

Code Listing 3: fdisk prompt

Command (m for help): 

Type p to display your disk's current partition configuration:

Code Listing 4: An example partition configuration

Command (m for help): p

Disk /dev/hda: 240 heads, 63 sectors, 2184 cylinders
Units = cylinders of 15120 * 512 bytes

Device Boot    Start       End    Blocks   Id  System
/dev/hda1             1        14    105808+  83  Linux
/dev/hda2            15        49    264600   82  Linux swap
/dev/hda3            50        70    158760   83  Linux
/dev/hda4            71      2184  15981840    5  Extended
/dev/hda5            71       209   1050808+  83  Linux
/dev/hda6           210       348   1050808+  83  Linux
/dev/hda7           349       626   2101648+  83  Linux
/dev/hda8           627       904   2101648+  83  Linux
/dev/hda9           905      2184   9676768+  83  Linux

Command (m for help): 

This particular disk is configured to house seven Linux filesystems (each with a corresponding partition listed as "Linux") as well as a swap partition (listed as "Linux swap").

Removing all Partitions

We will first remove all existing partitions from the disk. Type d to delete a partition. For instance, to delete an existing /dev/hda1:

Code Listing 5: Deleting a partition

Command (m for help): d
Partition number (1-4): 1

The partition has been scheduled for deletion. It will no longer show up if you type p, but it will not be erased until your changes have been saved. If you made a mistake and want to abort without saving your changes, type q immediately and hit enter and your partition will not be deleted.

Now, assuming that you do indeed want to wipe out all the partitions on your system, repeatedly type p to print out a partition listing and then type d and the number of the partition to delete it. Eventually, you'll end up with a partition table with nothing in it:

Code Listing 6: An empty partition table

Disk /dev/hda: 30.0 GB, 30005821440 bytes
240 heads, 63 sectors/track, 3876 cylinders
Units = cylinders of 15120 * 512 = 7741440 bytes

Device Boot    Start       End    Blocks   Id  System

Command (m for help):

Now that the in-memory partition table is empty, we're ready to create the partitions. We will use a default partitioning scheme as discussed previously. Of course, don't follow these instructions to the letter if you don't want the same partitioning scheme!

Creating the Boot Partition

We first create a small boot partition. Type n to create a new partition, then p to select a primary partition, followed by 1 to select the first primary partition. When prompted for the first cylinder, hit enter. When prompted for the last cylinder, type +32M to create a partition 32 Mbyte in size:

Code Listing 7: Creating the boot partition

Command (m for help): n
Command action
  e   extended
  p   primary partition (1-4)
Partition number (1-4): 1
First cylinder (1-3876, default 1): (Hit Enter)

Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-3876, default 3876): +32M

Now, when you type p, you should see the following partition printout:

Code Listing 8: Created boot partition

Command (m for help): p

Disk /dev/hda: 30.0 GB, 30005821440 bytes
240 heads, 63 sectors/track, 3876 cylinders
Units = cylinders of 15120 * 512 = 7741440 bytes

Device Boot    Start       End    Blocks   Id  System
/dev/hda1          1        14    105808+  83  Linux

We need to make this partition bootable. Type a to toggle the bootable flag on a partition and select 1. If you press p again, you will notice that an * is placed in the "Boot" column.

Creating the Swap Partition

Let's now create the swap partition. To do this, type n to create a new partition, then p to tell fdisk that you want a primary partition. Then type 2 to create the second primary partition, /dev/hda2 in our case. When prompted for the first cylinder, hit enter. When prompted for the last cylinder, type +512M to create a partition 512MB in size. After you've done this, type t to set the partition type, 2 to select the partition you just created and then type in 82 to set the partition type to "Linux Swap". After completing these steps, typing p should display a partition table that looks similar to this:

Code Listing 9: Partition listing after creating a swap partition

Command (m for help): p

Disk /dev/hda: 30.0 GB, 30005821440 bytes
240 heads, 63 sectors/track, 3876 cylinders
Units = cylinders of 15120 * 512 = 7741440 bytes

Device Boot    Start       End    Blocks   Id  System
/dev/hda1 *        1        14    105808+  83  Linux
/dev/hda2         15        81    506520   82  Linux swap

Creating the Root Partition

Finally, let's create the root partition. To do this, type n to create a new partition, then p to tell fdisk that you want a primary partition. Then type 3 to create the third primary partition, /dev/hda3 in our case. When prompted for the first cylinder, hit enter. When prompted for the last cylinder, hit enter to create a partition that takes up the rest of the remaining space on your disk. After completing these steps, typing p should display a partition table that looks similar to this:

Code Listing 10: Partition listing after creating the root partition

Command (m for help): p

Disk /dev/hda: 30.0 GB, 30005821440 bytes
240 heads, 63 sectors/track, 3876 cylinders
Units = cylinders of 15120 * 512 = 7741440 bytes

Device Boot    Start       End    Blocks   Id  System
/dev/hda1 *        1        14    105808+  83  Linux
/dev/hda2         15        81    506520   82  Linux swap
/dev/hda3         82      3876  28690200   83  Linux

Saving the Partition Layout

To save the partition layout and exit fdisk, type w.

Code Listing 11: Save and exit fdisk

Command (m for help): w

Now that your partitions are created, you can now continue with Creating Filesystems.

4.d. Creating Filesystems


Now that your partitions are created, it is time to place a filesystem on them. If you don't care about what filesystem to choose and are happy with what we use as default in this handbook, continue with Applying a Filesystem to a Partition. Otherwise read on to learn about the available filesystems...


Several filesystems are available. Some of them are found stable on the amd64 architecture, others aren't. The following filesystems are found to be stable: ext2 and ext3. jfs and reiserfs may work but need more testing. If you're really adventurous you can try the unsupported filesystems.

ext2 is the tried and true Linux filesystem but doesn't have metadata journaling, which means that routine ext2 filesystem checks at startup time can be quite time-consuming. There is now quite a selection of newer-generation journaled filesystems that can be checked for consistency very quickly and are thus generally preferred over their non-journaled counterparts. Journaled filesystems prevent long delays when you boot your system and your filesystem happens to be in an inconsistent state.

ext3 is the journaled version of the ext2 filesystem, providing metadata journaling for fast recovery in addition to other enhanced journaling modes like full data and ordered data journaling. It uses a hashed B*-tree index that enables high performance in almost all situations. In short, ext3 is a very good and reliable filesystem.

ReiserFS is a B*-tree based filesystem that has very good overall performance and greatly outperforms both ext2 and ext3 when dealing with small files (files less than 4k), often by a factor of 10x-15x. ReiserFS also scales extremely well and has metadata journaling. ReiserFS is solid and usable as both general-purpose filesystem and for extreme cases such as the creation of large filesystems, very large files and directories containing tens of thousands of small files.

XFS is a filesystem with metadata journaling which comes with a robust feature-set and is optimized for scalability. We only recommend using this filesystem on Linux systems with high-end SCSI and/or fibre channel storage and an uninterruptible power supply. Because XFS aggressively caches in-transit data in RAM, improperly designed programs (those that don't take proper precautions when writing files to disk and there are quite a few of them) can lose a good deal of data if the system goes down unexpectedly.

JFS is IBM's high-performance journaling filesystem. It has recently become production-ready and there hasn't been a sufficient track record to comment positively nor negatively on its general stability at this point.

Applying a Filesystem to a Partition

To create a filesystem on a partition or volume, there are tools available for each possible filesystem:

Filesystem Creation Command
ext2 mke2fs
ext3 mke2fs -j
reiserfs mkreiserfs
xfs mkfs.xfs
jfs mkfs.jfs

For instance, to have the boot partition (/dev/hda1 in our example) in ext2 and the root partition (/dev/hda3 in our example) in ext3 (as in our example), you would use:

Code Listing 12: Applying a filesystem on a partition

# mke2fs /dev/hda1
# mke2fs -j /dev/hda3

Now create the filesystems on your newly created partitions (or logical volumes).

Activating the Swap Partition

mkswap is the command that is used to initialize swap partitions:

Code Listing 13: Creating a Swap signature

# mkswap /dev/hda2

To activate the swap partition, use swapon:

Code Listing 14: Activating the swap partition

# swapon /dev/hda2

Create and activate the swap with the commands mentioned above.

4.e. Mounting

Now that your partitions are initialized and are housing a filesystem, it is time to mount those partitions. Use the mount command. Don't forget to create the necessary mount directories for every partition you created. As an example we mount the root and boot partition:

Code Listing 15: Mounting partitions

# mount /dev/hda3 /mnt/gentoo
# mkdir /mnt/gentoo/boot
# mount /dev/hda1 /mnt/gentoo/boot

Note: If you want your /tmp to reside on a separate partition, be sure to change its permissions after mounting: chmod 1777 /mnt/gentoo/tmp. This also holds for /var/tmp.

We will also have to mount the proc filesystem (a virtual interface with the kernel) on /proc. But first we will need to place our files on the partitions.

Continue with Installing the Gentoo Installation Files.

5. Installing the Gentoo Installation Files

5.a. Installing a Stage Tarball

Setting the Date/Time Right

Before you continue you need to check your date/time and update it. A misconfigured clock may lead to strange results in the future!

To verify the current date/time, run date:

Code Listing 1: Verifying the date/time

# date
Fri Mar 29 16:21:18 UTC 2005

If the date/time displayed is wrong, update it using the date MMDDhhmmYYYY syntax (Month, Day, hour, minute and Year). At this stage, you should use UTC time. You will be able to define your timezone later on. For instance, to set the date to March 29th, 16:21 in the year 2005:

Code Listing 2: Setting the UTC date/time

# date 032916212005

Making your Choice

The next step you need to perform is to install the stage3 tarball onto your system. You have the option of downloading the required tarball from the Internet or, if you are booted from one of the Gentoo Universal Installation CDs, copy it over from the CD itself. If you have a Universal CD and the stage you want to use is on the CD, downloading it from the Internet is just a waste of bandwidth as the stage files are the same. In most cases, the command uname -m can be used to help you decide which stage file to download.

5.b. Default: Using a Stage from the Internet

Downloading the Stage Tarball

Go to the Gentoo mountpoint at which you mounted your filesystems (most likely /mnt/gentoo):

Code Listing 3: Going to the Gentoo mountpoint

# cd /mnt/gentoo

Depending on your installation medium, you have a couple of tools available to download a stage. If you have links available, then you can immediately surf to the Gentoo mirrorlist and choose a mirror close to you.

If you don't have links available you should have lynx at your disposal. If you need to go through a proxy, export the http_proxy and ftp_proxy variables:

Code Listing 4: Setting proxy information for lynx

# export http_proxy=""
# export ftp_proxy=""

We will now assume that you have links at your disposal.

Pick the releases/ directory, followed by your architecture (for instance x86/) and the Gentoo version (2006.1/) to finish up with the stages/ directory. There you should see all available stage files for your architecture (they might be stored within subdirectories named to the individual subarchitectures). Select one and press D to download. When you're finished, press Q to quit the browser.

Code Listing 5: Surfing to the mirror listing with links

# links

(If you need proxy support with links:)

# links -http-proxy

Make sure you download a stage3 tarball - installations using a stage1 or stage2 tarball are not supported anymore.

If you want to check the integrity of the downloaded stage tarball, use md5sum and compare the output with the MD5 checksum provided on the mirror. For instance, to check the validity of the x86 stage tarball:

Code Listing 6: Example checking integrity of a stage tarball

# md5sum -c stage3-x86-2006.1.tar.bz2.DIGESTS
stage3-x86-2006.1.tar.bz2: OK

Unpacking the Stage Tarball

Now unpack your downloaded stage onto your system. We use tar to proceed as it is the easiest method:

Code Listing 7: Unpacking the stage

# tar xvjpf stage3-*.tar.bz2

Make sure that you use the same options (xvjpf). The x stands for Extract, the v for Verbose to see what happens during the extraction process (optional), the j for Decompress with bzip2, the p for Preserve permissions and the f to denote that we want to extract a file, not standard input.

Note: Some architectures (e.g. MIPS) Installation CDs and boot images rely upon the tar built into BusyBox which doesn't currently support the v option. Use the xjpf options instead.

Now that the stage is installed, continue with Installing Portage.

5.c. Alternative: Using a Stage from the Installation CD

Extracting the Stage Tarball

Important: If you are on AMD64 and using the Installer LiveCD, you will not have stages on your CD. You will have to follow instructions for Using a Stage Tarball from the Internet.

The stages on the CD reside in the /mnt/cdrom/stages directory. To see a listing of available stages, use ls:

Code Listing 8: List all available stages

# ls /mnt/cdrom/stages

If the system replies with an error, you may need to mount the CD-ROM first:

Code Listing 9: Mounting the CD-ROM

# ls /mnt/cdrom/stages

ls: /mnt/cdrom/stages: No such file or directory
# mount /dev/cdroms/cdrom0 /mnt/cdrom
# ls /mnt/cdrom/stages

Now go into your Gentoo mountpoint (usually /mnt/gentoo):

Code Listing 10: Changing directory to /mnt/gentoo

# cd /mnt/gentoo

We will now extract the stage tarball of your choice. We will do this with tar. Make sure you use the same options (xvjpf). The v argument is optional and not supported in some tar versions. In the next example, we extract the stage tarball stage3-<subarch>-2006.1.tar.bz2. Be sure to substitute the tarball filename with your stage.

Code Listing 11: Extracting the stage tarball

# tar xvjpf /mnt/cdrom/stages/stage3-<subarch>-2006.1.tar.bz2

Now that the stage is installed, continue with Installing Portage.

5.d. Installing Portage

Unpacking a Portage Snapshot

You now have to install a Portage snapshot, a collection of files that inform Portage what software titles you can install, which profiles are available, etc.

Download and Install a Portage Snapshot

Go to the mountpoint where you mounted your filesystem (most likely /mnt/gentoo):

Code Listing 12: Going to the Gentoo mountpoint

# cd /mnt/gentoo

Fire up links (or lynx) and go to our Gentoo mirror list. Pick a mirror close to you and open the snapshots/ directory. There, download the latest Portage snapshot (portage-latest.tar.bz2) by selecting it and pressing D.

Code Listing 13: Browsing the Gentoo mirrorlist

# links

Now exit your browser by pressing Q. You will now have a Portage snapshot stored in /mnt/gentoo.

If you want to check the integrity of the downloaded snapshot, use md5sum and compare the output with the MD5 checksum provided on the mirror.

Code Listing 14: Checking integrity of a Portage snapshot

# md5sum -c portage-latest.tar.bz2.md5sum
portage-latest.tar.bz2: OK

In the next step, we extract the Portage snapshot onto your filesystem. Make sure that you use the exact command; the last option is a capital C, not c.

Code Listing 15: Extracting the Portage snapshot

# tar xvjf /mnt/gentoo/portage-latest.tar.bz2 -C /mnt/gentoo/usr

5.e. Configuring the Compile Options


To optimize Gentoo, you can set a couple of variables which impact Portage behaviour. All those variables can be set as environment variables (using export) but that isn't permanent. To keep your settings, Portage provides you with /etc/make.conf, a configuration file for Portage. It is this file we will edit now.

Note: A commented listing of all possible variables can be found in /mnt/gentoo/etc/make.conf.example. For a successful Gentoo installation you'll only need to set the variables which are mentioned beneath.

Fire up your favorite editor (in this guide we use nano) so we can alter the optimization variables we will discuss hereafter.

Code Listing 16: Opening /etc/make.conf

# nano -w /mnt/gentoo/etc/make.conf

As you probably noticed, the make.conf.example file is structured in a generic way: commented lines start with "#", other lines define variables using the VARIABLE="content" syntax. The make.conf file uses the same syntax. Several of those variables are discussed next.


The CHOST variable declares the target build host for your system. This variable should already be set to the correct value. Do not edit it as that might break your system. If the CHOST variable does not look correct to you, you might be using the wrong stage3 tarball.


The CFLAGS and CXXFLAGS variables define the optimization flags for the gcc C and C++ compiler respectively. Although we define those generally here, you will only have maximum performance if you optimize these flags for each program separately. The reason for this is because every program is different.

In make.conf you should define the optimization flags you think will make your system the most responsive generally. Don't place experimental settings in this variable; too much optimization can make programs behave bad (crash, or even worse, malfunction).

We will not explain all possible optimization options. If you want to know them all, read the GNU Online Manual(s) or the gcc info page (info gcc -- only works on a working Linux system). The make.conf.example file itself also contains lots of examples and information; don't forget to read it too.

A first setting is the -march= flag, which specifies the name of the target architecture. Possible options are described in the make.conf.example file (as comments). For instance, for the x86 Athlon XP architecture:

Code Listing 17: The GCC march setting


A second one is the -O flag (that is a capital O, not a zero), which specifies the gcc optimization class flag. Possible classes are s (for size-optimized), 0 (zero - for no optimizations), 1, 2 or 3 for more speed-optimization flags (every class has the same flags as the one before, plus some extras). For instance, for a class-2 optimization:

Code Listing 18: The GCC O setting


Another popular optimization flag is -pipe (use pipes rather than temporary files for communication between the various stages of compilation).

Mind you that using -fomit-frame-pointer (which doesn't keep the frame pointer in a register for functions that don't need one) might have serious repercussions on the debugging of applications!

When you define the CFLAGS and CXXFLAGS, you should combine several optimization flags, like in the following example:

Code Listing 19: Defining the CFLAGS and CXXFLAGS variable

CFLAGS="-march=athlon-xp -pipe -O2"   # AMD64 users who want a native 64-bit system should use -march=athlon64
                                     # EM64T users should use -march=nocona
CXXFLAGS="${CFLAGS}"                 # Use the same settings for both variables


With MAKEOPTS you define how many parallel compilations should occur when you install a package. A good choice is the number of CPUs in your system plus one, but this guideline isn't always perfect.

Code Listing 20: MAKEOPTS for a regular, 1-CPU system


Ready, Set, Go!

Update your /mnt/gentoo/etc/make.conf to your own preference and save (nano users would hit Ctrl-X). You are now ready to continue with Installing the Gentoo Base System.

6. Installing the Gentoo Base System

6.a. Chrooting

Optional: Selecting Mirrors

In order to download source code quickly it is recommended to select a fast mirror. Portage will look in your make.conf file for the GENTOO_MIRRORS variable and use the mirrors listed therein. You can surf to our mirror list and search for a mirror (or mirrors) close to you (as those are most frequently the fastest ones), but we provide a nice tool called mirrorselect which provides you with a nice interface to select the mirrors you want.

Code Listing 1: Using mirrorselect for the GENTOO_MIRRORS variable

# mirrorselect -i -o >> /mnt/gentoo/etc/make.conf

Warning: Do not select any IPv6 mirrors. Our stages currently do not support IPv6.

A second important setting is the SYNC setting in make.conf. This variable contains the rsync server you want to use when updating your Portage tree (the collection of ebuilds, scripts containing all the information Portage needs to download and install software). Although you can manually enter a SYNC server for yourself, mirrorselect can ease that operation for you:

Code Listing 2: Selecting an rsync mirror using mirrorselect

# mirrorselect -i -r -o >> /mnt/gentoo/etc/make.conf

After running mirrorselect it is adviseable to double-check the settings in /mnt/gentoo/etc/make.conf !

Copy DNS Info

One thing still remains to be done before we enter the new environment and that is copying over the DNS information in /etc/resolv.conf. You need to do this to ensure that networking still works even after entering the new environment. /etc/resolv.conf contains the nameservers for your network.

Code Listing 3: Copy over DNS information

(The "-L" option is needed to make sure we don't copy a symbolic link)
# cp -L /etc/resolv.conf /mnt/gentoo/etc/resolv.conf

Mounting the /proc and /dev Filesystems

Mount the /proc filesystem on /mnt/gentoo/proc to allow the installation to use the kernel-provided information within the chrooted environment, and then mount-bind the /dev filesystem.

Code Listing 4: Mounting /proc and /dev

# mount -t proc none /mnt/gentoo/proc
# mount -o bind /dev /mnt/gentoo/dev

Entering the new Environment

Now that all partitions are initialized and the base environment installed, it is time to enter our new installation environment by chrooting into it. This means that we change from the current installation environment (Installation CD or other installation medium) to your installation system (namely the initialized partitions).

This chrooting is done in three steps. First we will change the root from / (on the installation medium) to /mnt/gentoo (on your partitions) using chroot. Then we will create a new environment using env-update, which essentially creates environment variables. Finally, we load those variables into memory using source.

Code Listing 5: Chrooting into the new environment

# chroot /mnt/gentoo /bin/bash
# env-update
>> Regenerating /etc/
# source /etc/profile
# export PS1="(chroot) $PS1"

Congratulations! You are now inside your own Gentoo Linux environment. Of course it is far from finished, which is why the installation still has some sections left :-)

6.b. Configuring Portage

Updating the Portage tree

You should now update your Portage tree to the latest version. emerge --sync does this for you.

Code Listing 6: Updating the Portage tree

# emerge --sync
(If you're using a slow terminal like some framebuffers or a serial
console, you can add the --quiet option to speed up this process:)
# emerge --sync --quiet

If you are behind a firewall that blocks rsync traffic, you can use emerge-webrsync which will download and install a portage snapshot for you.

If you are warned that a new Portage version is available and that you should update Portage, you should do it now using emerge portage command.

Choosing the Right Profile

First, a small definition is in place.

A profile is a building block for any Gentoo system. Not only does it specify default values for CHOST, CFLAGS and other important variables, it also locks the system to a certain range of package versions. This is all maintained by the Gentoo developers.

Previously, such a profile was untouched by the users. However, there may be certain situations in which you may decide a profile change is necessary.

You can see what profile you are currently using with the following command:

Code Listing 7: Verifying system profile

# ls -FGg /etc/make.profile
lrwxrwxrwx  1 48 Apr  8 18:51 /etc/make.profile -> ../usr/portage/profiles/default-linux/x86/2006.1/

The default profile will provide you with a Linux 2.6-based system. This is the recommended default, but you have the option of choosing another profile too.

There are also desktop and server subprofiles available for some architectures. Look inside the 2006.1/ profile to see if there is one available for your architecture. You may wish to view the desktop profile's make.defaults to determine if it fits your needs.

If you want to have a pure 64-bit environment, with no 32-bit applications or libraries, you should use a non-multilib profile:

Code Listing 8: Switching to a non-multilib profile

# ln -snf /usr/portage/profiles/default-linux/amd64/2006.1/no-multilib /etc/make.profile

Some users may wish to install a system based on the older Linux 2.4 profile. If you have good reason to do this, then you should first check that an additional profile exists. On x86, we can do this with the following command:

Code Listing 9: Finding out if an additional profile exists

# ls -d /usr/portage/profiles/default-linux/x86/no-nptl/2.4

The above example shows that the additional 2.4 profile exists (i.e. it didn't complain about missing file or directory). It is recommended that you stay with the default, but if you wish to switch, you can do so as follows:

Code Listing 10: Switching to a 2.4 profile

(Make sure you use the right architecture, the example below is for x86)
# ln -snf /usr/portage/profiles/default-linux/x86/no-nptl/2.4 /etc/make.profile
(List the files in the 2.4 profile)
# ls -FGg /etc/make.profile/
total 12
-rw-r--r--  1 939 Dec 10 14:06 packages
-rw-r--r--  1 347 Dec  3  2004 parent
-rw-r--r--  1 573 Dec  3  2004 virtuals

Configuring the USE variable

USE is one of the most powerful variables Gentoo provides to its users. Several programs can be compiled with or without optional support for certain items. For instance, some programs can be compiled with gtk-support, or with qt-support. Others can be compiled with or without SSL support. Some programs can even be compiled with framebuffer support (svgalib) instead of X11 support (X-server).

Most distributions compile their packages with support for as much as possible, increasing the size of the programs and startup time, not to mention an enormous amount of dependencies. With Gentoo you can define what options a package should be compiled with. This is where USE comes into play.

In the USE variable you define keywords which are mapped onto compile-options. For instance, ssl will compile ssl-support in the programs that support it. -X will remove X-server support (note the minus sign in front). gnome gtk -kde -qt3 -qt4 will compile your programs with gnome (and gtk) support, and not with kde (and qt) support, making your system fully tweaked for GNOME.

The default USE settings are placed in the make.defaults files of your profile. You will find make.defaults files in the directory which /etc/make.profile points to and all parent directories as well. The default USE setting is the sum of all USE settings in all make.defaults files. What you place in /etc/make.conf is calculated against these defaults settings. If you add something to the USE setting, it is added to the default list. If you remove something from the USE setting (by placing a minus sign in front of it) it is removed from the default list (if it was in the default list at all). Never alter anything inside the /etc/make.profile directory; it gets overwritten when you update Portage!

A full description on USE can be found in the second part of the Gentoo Handbook, USE flags. A full description on the available USE flags can be found on your system in /usr/portage/profiles/use.desc.

Code Listing 11: Viewing available USE flags

# less /usr/portage/profiles/use.desc
(You can scroll using your arrow keys, exit by pressing 'q')

As an example we show a USE setting for a KDE-based system with DVD, ALSA and CD Recording support:

Code Listing 12: Opening /etc/make.conf

# nano -w /etc/make.conf

Code Listing 13: USE setting

USE="-gtk -gnome qt3 qt4 kde dvd alsa cdr"

Optional: GLIBC Locales

You will probably only use one or maybe two locales on your system. You can specify locales you will need in /etc/locale.gen.

Code Listing 14: Opening /etc/locale.gen

# nano -w /etc/locale.gen

The following locales are an example to get both English (United States) and German (Germany) with the accompanying character formats (like UTF-8).

Code Listing 15: Specify your locales

en_US ISO-8859-1
en_US.UTF-8 UTF-8
de_DE ISO-8859-1
de_DE@euro ISO-8859-15

The next step is to run locale-gen. It will generate all the locales you have specified in the /etc/locale.gen file.

Note: locale-gen is available in glibc-2.3.6-r4 and newer. If you have an older version of glibc, you should update it now.

Now continue with Configuring the Kernel.

7. Configuring the Kernel

7.a. Timezone

You first need to select your timezone so that your system knows where it is located. Look for your timezone in /usr/share/zoneinfo, then copy it to /etc/localtime. Please avoid the /usr/share/zoneinfo/Etc/GMT* timezones as their names do not indicate the expected zones. For instance, GMT-8 is in fact GMT+8.

Code Listing 1: Setting the timezone information

# ls /usr/share/zoneinfo
(Suppose you want to use GMT)
# cp /usr/share/zoneinfo/GMT /etc/localtime

7.b. Installing the Sources

Choosing a Kernel

I use the vanilla sources patched against suspend 2 and bootsplash
But you can use the gentoo sources if you like. Its up to you anyway

The core around which all distributions are built is the Linux kernel. It is the layer between the user programs and your system hardware. Gentoo provides its users several possible kernel sources. A full listing with description is available at the Gentoo Kernel Guide.

For AMD64-based systems we have gentoo-sources (kernel v2.6 source patched with amd64 specific fixes for stability, performance and hardware support).

Choose your kernel source and install it using emerge. The USE="-doc" is necessary to avoid installing xorg-x11 or other dependencies at this point. USE="symlink" is not necessary for a new install, but ensures proper creation of the /usr/src/linux symlink.

Code Listing 2: Installing a kernel source

# USE="-doc symlink" emerge gentoo-sources

When you take a look in /usr/src you should see a symlink called linux pointing to your kernel source. In this case, the installed kernel source points to gentoo-sources-2.6.17-r5. Your version may be different, so keep this in mind.

Code Listing 3: Viewing the kernel source symlink

# ls -l /usr/src/linux
lrwxrwxrwx    1 root   root    12 Oct 13 11:04 /usr/src/linux -> linux-2.6.17-r5

Now it is time to configure and compile your kernel source. You can use genkernel for this, which will build a generic kernel as used by the Installation CD. We explain the "manual" configuration first though, as it is the best way to optimize your environment.

If you want to manually configure your kernel, continue now with Default: Manual Configuration. If you want to use genkernel you should read Alternative: Using genkernel instead.

7.c. Default: Manual Configuration


Manually configuring a kernel is often seen as the most difficult procedure a Linux user ever has to perform. Nothing is less true -- after configuring a couple of kernels you don't even remember that it was difficult ;)

However, one thing is true: you must know your system when you start configuring a kernel manually. Most information can be gathered by emerging pciutils (emerge pciutils) which contains lspci. You will now be able to use lspci within the chrooted environment. You may safely ignore any pcilib warnings (like pcilib: cannot open /sys/bus/pci/devices) that lspci throws out. Alternatively, you can run lspci from a non-chrooted environment. The results are the same. You can also run lsmod to see what kernel modules the Installation CD uses (it might provide you with a nice hint on what to enable).

Now go to your kernel source directory and execute make menuconfig. This will fire up an ncurses-based configuration menu.

Code Listing 4: Invoking menuconfig

# cd /usr/src/linux
# make menuconfig

You will be greeted with several configuration sections. We'll first list some options you must activate (otherwise Gentoo will not function, or not function properly without additional tweaks).

Activating Required Options

First of all, activate the use of development and experimental code/drivers. You need this, otherwise some very important code/drivers won't show up:

Code Listing 5: Selecting experimental code/drivers

Code maturity level options --->
  [*] Prompt for development and/or incomplete code/drivers

Make sure that every driver that is vital to the booting of your system (such as SCSI controller, ...) is compiled in the kernel and not as a module, otherwise your system will not be able to boot completely.

We shall then select the exact processor type. The x86_64 kernel maintainer strongly recommends users enable MCE features so that they are able to be notified of any hardware problems. On x86_64, these errors are not printed to dmesg like on other architectures, but to /dev/mcelog. This requires the app-admin/mcelog package.

Code Listing 6: Selecting processor type and features

Processor type and features  --->
   [ ] Intel MCE Features
   [X] AMD MCE Features						<--- EDITED
  Processor family (AMD-Opteron/Athlon64)  --->
    (X) AMD-Opteron/Athlon64				<--- EDITED
    ( ) Intel EM64T
    ( ) Generic-x86-64

Now go to File Systems and select support for the filesystems you use. Don't compile them as modules, otherwise your Gentoo system will not be able to mount your partitions. Also select Virtual memory and /proc file system.

Code Listing 7: Selecting necessary file systems

File systems --->
  Pseudo Filesystems --->
    [*] /proc file system support
    [*] Virtual memory file system support (former shm fs)

(Select one or more of the following options as needed by your system)
  <*> Reiserfs support
  <*> Ext3 journalling file system support
  <*> JFS filesystem support
  <*> Second extended fs support
  <*> XFS filesystem support

Do not forget to enable DMA for your drives:

Code Listing 8: Activating DMA

Device Drivers --->
  ATA/ATAPI/MFM/RLL support --->

    [*] Generic PCI bus-master DMA support
    [*]   Use PCI DMA by default when available
    <*>         ATI IXP chipset IDE support        <--EDITED

If you are using PPPoE to connect to the Internet or you are using a dial-up modem, you will need the following options in the kernel:

Code Listing 9: Selecting PPPoE necessary drivers

Device Drivers --->
  Networking Support --->

    <*> PPP (point-to-point protocol) support
    <*>   PPP support for async serial ports
    <*>   PPP support for sync tty ports

The two compression options won't harm but are not definitely needed, neither does the PPP over Ethernet option, that might only be used by rp-pppoe when configured to do kernel mode PPPoE.

If you require it, don't forget to include support in the kernel for your ethernet card.

If you have a multi-CPU Opteron or a multi-core (e.g. AMD64 X2) system, you should activate "Symmetric multi-processing support":

Code Listing 10: Activating SMP support

Processor type and features  --->
  [ ] Symmetric multi-processing support     <--- EDITED (activate for turion X2)

Note: In multi-core systems, each core counts as one processor.

If you use USB Input Devices (like Keyboard or Mouse) don't forget to enable those as well:

Code Listing 11: Activating USB Support for Input Devices

Device Drivers --->
  USB Support --->
    <*>   USB Human Interface Device (full HID) support

Compiling and Installing

Now that your kernel is configured, it is time to compile and install it. Exit the configuration and start the compilation process:

EDITED: So we have done the basic Kernel configuration, and here is the notebook specific part
First if you use 2.6.18, and I'm using it we have to deactivate iommu for graphic card features.
Its quite a pest because the kernel guys activated it by default. So close your menuconfig menu and edit the file
"/usr/src/linux/arch/x86_64/Kconfig" search for the line "bool "IOMMU support" if EMBEDDED " and replace it with "bool "IOMMU support"".
Having done that we can return to our kernel configuration. To reopen the config by typing "make menuconfig". Here are the types of modification.

Graphic card modification:

-> Processor type and features
[*] MTRR (Memory Type Range Register) support
[ ] IOMMU support

Loadable Module Support --->
[*] Enable loadable module support
[*] Module unloading

Graphics support --->
[ ] Support for framebuffer devices

Kernel Hacking --->
[ ] Kernel debugging

Thats from the ati amd64 gentoo howto

The next thing is sound

-> Device Drivers
-> Sound
-> Advanced Linux Sound Architecture
<*> Advanced Linux Sound Architecture
<*> Sequencer support
PCI devices --->
<*> ATI IXP AC97 Controller

Disable all other sound cards.

Network cards:
Networking --->
[*] Networking support
Networking options --->
[ ] Amateur Radio support --->
< > IrDA (infrared) subsystem support ---> <-I don't need bluetooth or infrared
< > Bluetooth subsystem support ---> <-so I let it deactivated activate on will
<*> Generic IEEE 802.11 Networking Stack
[ ] Enable full debugging output
--- IEEE 802.11 WEP encryption (802.1x)
< > IEEE 802.11i CCMP support
< > IEEE 802.11i TKIP encryption
<*> Software MAC add-on to the IEEE 802.11 networking stack
[ ] Enable full debugging output

Networking options --->
< > The IPv6 protocol

As ipv6 isn't common by now it just slows your ipv4 connection, so deactivate it.
-> Device Drivers
-> Network device support
-> Ethernet (1000 Mbit)
<*> Realtek 8169 gigabit ethernet support
[ ] Use Rx and Tx Polling (NAPI) (EXPERIMENTAL) <- DONT ACTIVATE it causes kernel panics on dhcp

-> Device Drivers
-> Network device support
-> Wireless LAN (non-hamradio)
[*] Wireless LAN drivers (non-hamradio) & Wireless Extensions
<*> Broadcom BCM43xx wireless support <-- This card has an I think always will have a quite limited range, and its buggy in 2.6.16, but it works now
[*] Broadcom BCM43xx debugging (RECOMMENDED)

I decidet do remove the graphic card section, because you have to choose
yourself which driver you want to use, I have xf86-video-ati-6.6.3
but there is a bug when running low on graphic ram, so you get a hardlock after the
3rd to 4th match of ut so I actually can't recommend the open source driver
for permanent use anymore, but the fglrx driver is a pest and I hate it
3d hardware acceleration is yet experimental, so decide yourself
If you want to use the same configuration just pick my config and have

anyway you can pick my kernel config
to get the same functionality you need the bootsplash patch
and the suspend2 patch as I use it.
At the moment I use vanilla-sources- and everything seems to work fine

Code Listing 12: Compiling the kernel

# make && make modules_install

When the kernel has finished compiling, copy the kernel image to /boot. Use whatever name you feel is appropriate for your kernel choice and remember it as you will need it later on when you configure your bootloader. Remember to replace kernel-2.6.17-gentoo-r5 with the name and version of your kernel.

Code Listing 13: Installing the kernel

# cp arch/x86_64/boot/bzImage /boot/kernel-2.6.17-gentoo-r5

Now continue with Kernel Modules.

7.d. Alternative: Using genkernel

If you are reading this section, you have chosen to use our genkernel script to configure your kernel for you.

Now that your kernel source tree is installed, it's now time to compile your kernel by using our genkernel script to automatically build a kernel for you. genkernel works by configuring a kernel nearly identically to the way our Installation CD kernel is configured. This means that when you use genkernel to build your kernel, your system will generally detect all your hardware at boot-time, just like our Installation CD does. Because genkernel doesn't require any manual kernel configuration, it is an ideal solution for those users who may not be comfortable compiling their own kernels.

Now, let's see how to use genkernel. First, emerge the genkernel ebuild:

Code Listing 14: Emerging genkernel

# emerge genkernel

Now, compile your kernel sources by running genkernel all. Be aware though, as genkernel compiles a kernel that supports almost all hardware, this compilation will take quite a while to finish!

Note that, if your boot partition doesn't use ext2 or ext3 as filesystem you might need to manually configure your kernel using genkernel --menuconfig all and add support for your filesystem in the kernel (i.e. not as a module). Users of EVMS2 or LVM2 will probably want to add --evms2 or --lvm2 as argument as well.

Code Listing 15: Running genkernel

# genkernel all

Once genkernel completes, a kernel, full set of modules and initial root disk (initrd) will be created. We will use the kernel and initrd when configuring a boot loader later in this document. Write down the names of the kernel and initrd as you will need it when writing the bootloader configuration file. The initrd will be started immediately after booting to perform hardware autodetection (just like on the Installation CD) before your "real" system starts up.

Code Listing 16: Checking the created kernel image name and initrd

# ls /boot/kernel* /boot/initramfs*

Now, let's perform one more step to get our system to be more like the Installation CD -- let's emerge coldplug. While the initrd autodetects hardware that is needed to boot your system, coldplug autodetects everything else. To emerge and enable coldplug, type the following:

Code Listing 17: Emerging and enabling coldplug

# emerge coldplug
# rc-update add coldplug boot

Note: You no longer need to emerge coldplug if you're using udev version 103 and higher. If you receive a message that udev blocks coldplug from being installed, then you don't need to install coldplug.

7.e. Kernel Modules

Configuring the Modules

You should list the modules you want automatically loaded in /etc/modules.autoload.d/kernel-2.6. You can add extra options to the modules too if you want.

To view all available modules, run the following find command. Don't forget to substitute 2.6.17-r5 with the version of the kernel you just compiled:

Code Listing 18: Viewing all available modules

# find /lib/modules/2.6.17-r5/ -type f -iname '*.o' -or -iname '*.ko'

For instance, to automatically load the 3c59x.o module, edit the kernel-2.6 file and enter the module name in it.

Code Listing 19: Editing /etc/modules.autoload.d/kernel-2.6

# nano -w /etc/modules.autoload.d/kernel-2.6

Code Listing 20: /etc/modules.autoload.d/kernel-2.6


Continue the installation with Configuring your System.

8. Configuring your System

8.a. Filesystem Information

What is fstab?

Under Linux, all partitions used by the system must be listed in /etc/fstab. This file contains the mount points of those partitions (where they are seen in the file system structure), how they should be mounted and with what special options (automatically or not, whether users can mount them or not, etc.)

Creating /etc/fstab

/etc/fstab uses a special syntax. Every line consists of six fields, separated by whitespace (space(s), tabs or a mixture). Each field has its own meaning:

  • The first field shows the partition described (the path to the device file)
  • The second field shows the mount point at which the partition should be mounted
  • The third field shows the filesystem used by the partition
  • The fourth field shows the mount options used by mount when it wants to mount the partition. As every filesystem has its own mount options, you are encouraged to read the mount man page (man mount) for a full listing. Multiple mount options are comma-separated.
  • The fifth field is used by dump to determine if the partition needs to be dumped or not. You can generally leave this as 0 (zero).
  • The sixth field is used by fsck to determine the order in which filesystems should be checked if the system wasn't shut down properly. The root filesystem should have 1 while the rest should have 2 (or 0 if a filesystem check isn't necessary).

Important: The default /etc/fstab file provided by Gentoo is not a valid fstab file, You have to create your own /etc/fstab.

Code Listing 1: Opening /etc/fstab

# nano -w /etc/fstab

Let us take a look at how we write down the options for the /boot partition. This is just an example, if you didn't or couldn't create a /boot, don't copy it.

In our default AMD64 partitioning example, /boot is usually the /dev/hda1 partition (or /dev/sda* if you use SCSI or SATA drives), with ext2 as filesystem. It needs to be checked during boot, so we would write down:

Code Listing 2: An example /boot line for /etc/fstab

/dev/hda1   /boot     ext2    defaults        1 2

Some users don't want their /boot partition to be mounted automatically to improve their system's security. Those people should substitute defaults with noauto. This does mean that you need to manually mount this partition every time you want to use it.

Add the rules that match your partitioning scheme and append rules for /proc, tmpfs, for your CD-ROM drive(s), and of course, if you have other partitions or drives, for those too.

Now use the example below to create your /etc/fstab:

Code Listing 3: A full /etc/fstab example

/dev/hda1   /boot        ext2    defaults,noatime     1 2
/dev/hda2   none         swap    sw                   0 0
/dev/hda3   /            ext3    noatime              0 1

proc        /proc        proc    defaults             0 0
shm         /dev/shm     tmpfs   nodev,nosuid,noexec  0 0

/dev/cdrom  /mnt/cdrom   auto    noauto,user          0 0

auto makes mount guess for the filesystem (recommended for removable media as they can be created with one of many filesystems) and user makes it possible for non-root users to mount the CD.

To improve performance, most users would want to add the noatime mount option, which results in a faster system since access times aren't registered (you don't need those generally anyway).

Double-check your /etc/fstab, save and quit to continue.

8.b. Networking Information

Host name, Domainname, etc

One of the choices the user has to make is name his/her PC. This seems to be quite easy, but lots of users are having difficulties finding the appropriate name for their Linux-pc. To speed things up, know that any name you choose can be changed afterwards. For all we care, you can just call your system tux and domain homenetwork.

Code Listing 4: Setting the host name

# nano -w /etc/conf.d/hostname

(Set the HOSTNAME variable to your host name)

Second we set the domainname in /etc/conf.d/net:

Code Listing 5: Setting the domainname

# nano -w /etc/conf.d/net

(Set the dns_domain variable to your domain name)

If you have a NIS domain (if you don't know what that is, then you don't have one), you need to define that one too:

Code Listing 6: Setting the NIS domainname

# nano -w /etc/conf.d/net

(Set the nis_domain variable to your NIS domain name)

Note: For more information on configuring DNS and NIS, please read the examples provided in /etc/conf.d/net.example. Also, you may want to emerge resolvconf-gentoo to help manage your DNS/NIS setup.

Configuring your Network

Before you get that "Hey, we've had that already"-feeling, you should remember that the networking you set up in the beginning of the Gentoo installation was just for the installation. Right now you are going to configure networking for your Gentoo system permanently.

Note: More detailed information about networking, including advanced topics like bonding, bridging, 802.1Q VLANs or wireless networking is covered in the Gentoo Network Configuration section.

All networking information is gathered in /etc/conf.d/net. It uses a straightforward yet not intuitive syntax if you don't know how to set up networking manually. But don't fear, we'll explain everything. A fully commented example that covers many different configurations is available in /etc/conf.d/net.example.

DHCP is used by default. For DHCP to work, you will need to install a DHCP client. This is described later in Installing Necessary System Tools. Do not forget to install a DHCP client.

If you need to configure your network connection either because you need specific DHCP options or because you do not use DHCP at all, open /etc/conf.d/net with your favorite editor (nano is used in this example):

Code Listing 7: Opening /etc/conf.d/net for editing

# nano -w /etc/conf.d/net

You will see the following file:

Code Listing 8: Default /etc/conf.d/net

# This blank configuration will automatically use DHCP for any net.*
# scripts in /etc/init.d.  To create a more complete configuration,
# please review /etc/conf.d/net.example and save your configuration
# in /etc/conf.d/net (this file :]!).

To enter your own IP address, netmask and gateway, you need to set both config_eth0 and routes_eth0:

Code Listing 9: Manually setting IP information for eth0

config_eth0=( " netmask brd" )
routes_eth0=( "default gw" )

To use DHCP and add specific DHCP options, define config_eth0 and dhcp_eth0:

Code Listing 10: Automatically obtaining an IP address for eth0

config_eth0=( "dhcp" )
dhcp_eth0="nodns nontp nonis"

Please read /etc/conf.d/net.example for a list of all available options.

If you have several network interfaces repeat the above steps for config_eth1, config_eth2, etc.

Now save the configuration and exit to continue.

Automatically Start Networking at Boot

To have your network interfaces activated at boot, you need to add them to the default runlevel. If you have PCMCIA interfaces you should skip this action as the PCMCIA interfaces are started by the PCMCIA init script.

Code Listing 11: Adding net.eth0 to the default runlevel

# rc-update add net.eth0 default

If you have several network interfaces, you need to create the appropriate net.eth1, net.eth2 etc. initscripts for those. You can use ln to do this:

Code Listing 12: Creating extra initscripts

# cd /etc/init.d
# ln -s net.lo net.eth1
# rc-update add net.eth1 default

Writing Down Network Information

You now need to inform Linux about your network. This is defined in /etc/hosts and helps in resolving host names to IP addresses for hosts that aren't resolved by your nameserver. You need to define your system. You may also want to define other systems on your network if you don't want to set up your own internal DNS system.

Code Listing 13: Opening /etc/hosts

# nano -w /etc/hosts

Code Listing 14: Filling in the networking information

(This defines the current system)     tux.homenetwork tux localhost

(Define extra systems on your network,
they need to have a static IP to be defined this way.)   jenny.homenetwork jenny   benny.homenetwork benny

Save and exit the editor to continue.

If you don't have PCMCIA, you can now continue with System Information. PCMCIA-users should read the following topic on PCMCIA.

Optional: Get PCMCIA Working

PCMCIA-users should first install the pcmcia-cs package. This also includes users who will be working with a 2.6 kernel (even though they won't be using the PCMCIA drivers from this package). The USE="-X" is necessary to avoid installing xorg-x11 at this moment:

Code Listing 15: Installing pcmcia-cs

# USE="-X" emerge pcmcia-cs

When pcmcia-cs is installed, add pcmcia to the default runlevel:

Code Listing 16: Adding pcmcia to the default runlevel

# rc-update add pcmcia default

8.c. System Information

Root Password

First we set the root password by typing:

Code Listing 17: Setting the root password

# passwd

If you want root to be able to log on through the serial console, add tts/0 to /etc/securetty:

Code Listing 18: Adding tts/0 to /etc/securetty

# echo "tts/0" >> /etc/securetty

System Information

Gentoo uses /etc/rc.conf for general, system-wide configuration. Open up /etc/rc.conf and enjoy all the comments in that file :)

Code Listing 19: Opening /etc/rc.conf

# nano -w /etc/rc.conf

When you're finished configuring /etc/rc.conf, save and exit.

As you can see, this file is well commented to help you set up the necessary configuration variables. You can configure your system to use unicode and define your default editor and your display manager (like gdm or kdm).

Gentoo uses /etc/conf.d/keymaps to handle keyboard configuration. Edit it to configure your keyboard.

Code Listing 20: Opening /etc/conf.d/keymaps

# nano -w /etc/conf.d/keymaps

Take special care with the KEYMAP variable. If you select the wrong KEYMAP, you will get weird results when typing on your keyboard.

When you're finished configuring /etc/conf.d/keymaps, save and exit.

Gentoo uses /etc/conf.d/clock to set clock options. Edit it according to your needs.

Code Listing 21: Opening /etc/conf.d/clock

# nano -w /etc/conf.d/clock

If your hardware clock is not using UTC, you need to add CLOCK="local" to the file. Otherwise you will notice some clock skew.

When you're finished configuring /etc/conf.d/clock, save and exit.

Please continue with Installing Necessary System Tools.

9. Installing Necessary System Tools

9.a. Device Manager

If you are using a 2.4 kernel and are installing Gentoo from stage 3, there are a few things you need to do. Since Gentoo now uses udev by default and udev is not supported by 2.4 kernels, you will have to make use of devfsd and remove udev.

Code Listing 1: Installing devfsd

(For those using 2.4.x kernels with a stage 3 install)
# emerge --unmerge udev
# emerge devfsd

9.b. System Logger

Some tools are missing from the stage3 archive because several packages provide the same functionality. It is now up to you to choose which ones you want to install.

The first tool you need to decide on has to provide logging facilities for your system. Unix and Linux have an excellent history of logging capabilities -- if you want you can log everything that happens on your system in logfiles. This happens through the system logger.

Gentoo offers several system loggers to choose from. There are sysklogd, which is the traditional set of system logging daemons, syslog-ng, an advanced system logger, and metalog which is a highly-configurable system logger. Others might be available through Portage as well - our number of available packages increases on a daily basis.

If you plan on using sysklogd or syslog-ng you might want to install logrotate afterwards as those system loggers don't provide any rotation mechanism for the log files.

To install the system logger of your choice, emerge it and have it added to the default runlevel using rc-update. The following example installs syslog-ng. Of course substitute with your system logger:

Code Listing 2: Installing a system logger

# emerge syslog-ng

# rc-update add syslog-ng default

9.c. Optional: Cron Daemon

Next is the cron daemon. Although it is optional and not required for your system, it is wise to install one. But what is a cron daemon? A cron daemon executes scheduled commands. It is very handy if you need to execute some command regularly (for instance daily, weekly or monthly).

Gentoo offers three possible cron daemons: dcron, fcron and vixie-cron. Installing one of them is similar to installing a system logger. However, dcron and fcron require an extra configuration command, namely crontab /etc/crontab. If you don't know what to choose, use vixie-cron.

We only provide vixie-cron for networkless installations. If you want another cron daemon you can wait and install it later on.

Code Listing 3: Installing a cron daemon

# emerge vixie-cron
# rc-update add vixie-cron default
(Only if you have chosen dcron or fcron) # crontab /etc/crontab

9.d. Optional: File Indexing

If you want to index your system's files so you are able to quickly locate them using the locate tool, you need to install sys-apps/slocate.

Code Listing 4: Installing slocate

# emerge slocate

9.e. File System Tools

Depending on what file systems you are using, you need to install the necessary file system utilities (for checking the filesystem integrity, creating additional file systems etc.).

The following table lists the tools you need to install if you use a certain file system:

File System Tool Install Command
XFS xfsprogs emerge xfsprogs
ReiserFS reiserfsprogs emerge reiserfsprogs
JFS jfsutils emerge jfsutils

If you are an EVMS user, you also need to install evms:

Code Listing 5: Installing EVMS utilities

# USE="-gtk" emerge evms

The USE="-gtk" will prevent the installation of dependencies. If you want to enable the evms graphical tools, you can recompile evms later on.

If you don't require any additional networking-related tools (such as rp-pppoe or a dhcp client) continue with Configuring the Bootloader.

9.f. Networking Tools

Optional: Installing a DHCP Client

If you require Gentoo to automatically obtain an IP address for your network interface(s), you need to install dhcpcd (or any other DHCP client -- see Modular Networking for a list of available DHCP clients). If you don't do this now, you might not be able to connect to the internet after the installation.

Code Listing 6: Installing dhcpcd

# emerge dhcpcd

Optional: Installing a PPPoE Client

If you need rp-pppoe to connect to the net, you need to install it.

Code Listing 7: Installing rp-pppoe

# USE="-X" emerge rp-pppoe

The USE="-X" will prohibit xorg-x11 to be installed as a dependency (rp-pppoe has graphical tools; if you want those enabled, you can recompile rp-pppoe later on or have xorg-x11 installed now -- which takes a long time to compile).

Optional: RAID utilities for IBM hardware

If you are using SCSI RAID on a POWER5-based system, you should consider installing the iprutils which will allow you to work with the RAID disk array, get status on the disks in the arrays, and update microcode among other functions.

Code Listing 8: Installing iprutils

# emerge iprutils

Now continue with Configuring the Bootloader.

10. Configuring the Bootloader

10.a. Making your Choice


Now that your kernel is configured and compiled and the necessary system configuration files are filled in correctly, it is time to install a program that will fire up your kernel when you start the system. Such a program is called a bootloader.

But before we install the bootloader, we inform you how to configure framebuffer (assuming you want it of course). With framebuffer you can run the Linux command line with (limited) graphical features (such as using the nice bootsplash image Gentoo provides).

Optional: Framebuffer

If you have configured your kernel with framebuffer support (or you used genkernel default kernel configuration), you can activate it by adding a vga and/or a video statement to your bootloader configuration file.

64-bit systems must use the the vesafb driver, and need the vga statement.

The vga statement controls the resolution and color depth of your framebuffer screen for vesafb. As stated in /usr/src/linux/Documentation/fb/vesafb.txt (which gets installed when you install a kernel source package), you need to pass the VESA number corresponding to the requested resolution and color depth to it.

The following table lists the available resolutions and color depths and matches those against the value that you need to pass on to the vga statement.

640x480 800x600 1024x768 1280x1024
256 0x301 0x303 0x305 0x307
32k 0x310 0x313 0x316 0x319
64k 0x311 0x314 0x317 0x31A
16M 0x312 0x315 0x318 0x31B

The video statement controls framebuffer display options. It needs to be given the framebuffer driver (vesafb for 2.6 kernels, or vesa for 2.4 kernels) followed by the control statements you wish to enable. All variables are listed in /usr/src/linux/Documentation/fb/vesafb.txt. The most-used options are:

Control Description
ywrap Assume that the graphical card can wrap around its memory (i.e. continue at the beginning when it has approached the end)
mtrr:n Setup MTRR registers. n can be:
0 - disabled
1 - uncachable
2 - write-back
3 - write-combining
4 - write-through

The result of those two statements could be something like vga=0x318 video=vesafb:mtrr:3,ywrap. Write this setting down; you will need it shortly.

While LILO does work on AMD64, Gentoo only supports using GRUB. Now continue by its installation.

10.b. Default: Using GRUB

Understanding GRUB's terminology

The most critical part of understanding GRUB is getting comfortable with how GRUB refers to hard drives and partitions. Your Linux partition /dev/hda1 (for IDE drives) or /dev/sda1 (for SATA/SCSI drives) will most likely be called (hd0,0) under GRUB. Notice the parentheses around the hd0,0 - they are required.

Hard drives count from zero rather than "a" and partitions start at zero rather than one. Be aware too that with the hd devices, only hard drives are counted, not atapi-ide devices such as cdrom players and burners. Also, the same construct is used with SCSI drives. (Normally they get higher numbers than IDE drives except when the BIOS is configured to boot from SCSI devices.) When you ask the BIOS to boot from a different hard disk (for instance your primary slave), that harddisk is seen as hd0.

Assuming you have a hard drive on /dev/hda, a cdrom player on /dev/hdb, a burner on /dev/hdc, a second hard drive on /dev/hdd and no SCSI hard drive, /dev/hdd7 gets translated to (hd1,6). It might sound tricky and tricky it is indeed, but as we will see, GRUB offers a tab completion mechanism that comes handy for those of you having a lot of hard drives and partitions and who are a little lost in the GRUB numbering scheme.

Having gotten the feel for that, it is time to install GRUB.

Installing GRUB

To install GRUB, let's first emerge it:

Important: If you are using a non-multilib profile, you should not emerge grub, but instead you should emerge grub-static.

Code Listing 1: Installing GRUB

# emerge grub

Although GRUB is now installed, we still need to write up a configuration file for it and place GRUB in our MBR so that GRUB automatically boots your newly created kernel. Create /boot/grub/grub.conf with nano (or, if applicable, another editor):

Code Listing 2: Creating /boot/grub/grub.conf

# nano -w /boot/grub/grub.conf

Now we are going to write up a grub.conf. Below you'll find two possible grub.conf for the partitioning example we use in this guide. We've only extensively commented the first grub.conf. Make sure you use your kernel image filename and, if appropriate, your initrd image filename.

  • The first grub.conf is for people who have not used genkernel to build their kernel
  • The second grub.conf is for people who have used genkernel to build their kernel

Note: If your root filesystem is JFS, you must add " ro" to the kernel line since JFS needs to replay its log before it allows read-write mounting.

Code Listing 3: grub.conf for non-genkernel users

# Which listing to boot as default. 0 is the first, 1 the second etc.
default 0
# How many seconds to wait before the default listing is booted.
timeout 30
# Nice, fat splash-image to spice things up :)
# Comment out if you don't have a graphics card installed

title=Gentoo Linux 2.6.17-r5
# Partition where the kernel image (or operating system) is located

root (hd0,0)
kernel /boot/kernel-2.6.17-gentoo-r5 root=/dev/hda3

title=Gentoo Linux 2.6.17-r5 (rescue)
# Partition where the kernel image (or operating system) is located
root (hd0,0)
kernel /boot/kernel-2.6.17-gentoo-r5 root=/dev/hda3 init=/bin/bb

# The next four lines are only if you dualboot with a Windows system.
# In this case, Windows is hosted on /dev/hda6.
title=Windows XP
rootnoverify (hd0,5)
chainloader +1

Code Listing 4: grub.conf for genkernel users

default 0
timeout 30

title=Gentoo Linux 2.6.17-r5
root (hd0,0)
kernel /boot/kernel-genkernel-amd64-2.6.17-gentoo-r5 root=/dev/ram0 init=/linuxrc ramdisk=8192 real_root=/dev/hda3 udev
initrd /boot/initramfs-genkernel-amd64-2.6.17-gentoo-r5

# Only in case you want to dual-boot
title=Windows XP
rootnoverify (hd0,5)
chainloader +1

Note: The udev mentioned at the end of the kernel line is needed to work around a bug in some genkernel versions if you use udev in the first place (which is the default behaviour).

If you used a different partitioning scheme and/or kernel image, adjust accordingly. However, make sure that anything that follows a GRUB-device (such as (hd0,0)) is relative to the mountpoint, not the root. In other words, (hd0,0)/grub/splash.xpm.gz is in reality /boot/grub/splash.xpm.gz since (hd0,0) is /boot.

Besides, if you chose to use a different partitioning scheme and did not put /boot in a separate partition, the /boot prefix used in the above code samples is really required. If you followed our suggested partitioning plan, the /boot prefix it not required, but a boot symlink makes it work. In short, the above examples should work whether you defined a separate /boot partition or not.

If you need to pass any additional options to the kernel, simply add them to the end of the kernel command. We're already passing one option (root=/dev/hda3 or real_root=/dev/hda3), but you can pass others as well, such as the video and/or vga statements for framebuffer as we discussed previously.

If you're using a 2.6.7 or higher kernel and you jumpered your harddrive because the BIOS can't handle large harddrives you'll need to append hdx=stroke.

genkernel users should know that their kernels use the same boot options as is used for the Installation CD. For instance, if you have SCSI devices, you should add doscsi as kernel option.

Now save the grub.conf file and exit. You still need to install GRUB in the MBR (Master Boot Record) so that GRUB is automatically executed when you boot your system.

The GRUB developers recommend the use of grub-install. However, if for some reason grub-install fails to work correctly you still have the option to manually install GRUB.

Continue with Default: Setting up GRUB using grub-install or Alternative: Setting up GRUB using manual instructions.

Default: Setting up GRUB using grub-install

To install GRUB you will need to issue the grub-install command. However, grub-install won't work off-the-shelf since we are inside a chrooted environment. We need to create /etc/mtab which lists all mounted filesystems. Fortunately, there is an easy way to accomplish this - just copy over /proc/mounts to /etc/mtab, excluding the rootfs line if you haven't created a separate boot partition. The following command will work in both cases:

Code Listing 5: Creating /etc/mtab

# grep -v rootfs /proc/mounts > /etc/mtab

Now we can install GRUB using grub-install:

Code Listing 6: Running grub-install

# grub-install /dev/hda

If you have more questions regarding GRUB, please consult the GRUB FAQ or the GRUB Manual.

Continue with Rebooting the System.

Alternative: Setting up GRUB using manual instructions

To start configuring GRUB, you type in grub. You'll be presented with the grub> grub command-line prompt. Now, you need to type in the right commands to install the GRUB boot record onto your hard drive.

Code Listing 7: Starting the GRUB shell

# grub

Note: If your system does not have any floppy drives, add the --no-floppy option to the above command to prevent grub from probing the (non-existing) floppy drives.

In the example configuration we want to install GRUB so that it reads its information from the boot partition /dev/hda1, and installs the GRUB boot record on the hard drive's MBR (master boot record) so that the first thing we see when we turn on the computer is the GRUB prompt. Of course, if you haven't followed the example configuration during the installation, change the commands accordingly.

The tab completion mechanism of GRUB can be used from within GRUB. For instance, if you type in "root (" followed by a TAB, you will be presented with a list of devices (such as hd0). If you type in "root (hd0," followed by a TAB, you will receive a list of available partitions to choose from (such as hd0,0).

By using the tab completion, setting up GRUB should be not that hard. Now go on, configure GRUB, shall we? :-)

Code Listing 8: Installing GRUB in the MBR

grub> root (hd0,0)    (Specify where your /boot partition resides)
grub> setup (hd0)     (Install GRUB in the MBR)

grub> quit            (Exit the GRUB shell)

Note: If you want to install GRUB in a certain partition instead of the MBR, you have to alter the setup command so it points to the right partition. For instance, if you want GRUB installed in /dev/hda3, then the command becomes setup (hd0,2). Few users however want to do this.

If you have more questions regarding GRUB, please consult the GRUB FAQ or the GRUB Manual.

Continue with Rebooting the System.

10.c. Rebooting the System

Exit the chrooted environment and unmount all mounted partitions. Then type in that one magical command you have been waiting for: reboot.

Code Listing 9: Unmounting all partitions and rebooting

# exit

cdimage ~# cd
cdimage ~# umount /mnt/gentoo/boot /mnt/gentoo/dev /mnt/gentoo/proc /mnt/gentoo
cdimage ~# reboot

Of course, don't forget to remove the bootable CD, otherwise the CD will be booted again instead of your new Gentoo system.

Once rebooted in your Gentoo installation, finish up with Finalizing your Gentoo Installation.

11. Finalizing your Gentoo Installation

11.a. User Administration

Adding a User for Daily Use

Working as root on a Unix/Linux system is dangerous and should be avoided as much as possible. Therefore it is strongly recommended to add a user for day-to-day use.

The groups the user is member of define what activities the user can perform. The following table lists a number of important groups you might wish to use:

Group Description
audio be able to access the audio devices
cdrom be able to directly access optical devices
floppy be able to directly access floppy devices
games be able to play games
portage be able to use emerge --pretend as a normal user
usb be able to access USB devices
plugdev Be able to mount and use pluggable devices such as cameras and USB sticks
video be able to access video capturing hardware and doing hardware acceleration
wheel be able to use su

For instance, to create a user called john who is member of the wheel, users and audio groups, log in as root first (only root can create users) and run useradd:

Code Listing 1: Adding a user for day-to-day use

Login: root
Password: (Your root password)

# useradd -m -G users,wheel,audio -s /bin/bash john
# passwd john

Password: (Enter the password for john)
Re-enter password: (Re-enter the password to verify)

If a user ever needs to perform some task as root, they can use su - to temporarily receive root privileges. Another way is to use the sudo package which is, if correctly configured, very secure.

11.b. Disk Cleanup

Removing tarballs

Now that you've finished installing Gentoo and rebooted, if everything has gone well, you can remove the downloaded stage3 tarball and Portage snapshot from your hard disk. Remember that they were downloaded to your root (/) directory.

Code Listing 2: Removing the stage3 tarball

# rm /stage3-*.tar.bz2*

Code Listing 3: Removing the Portage snapshot

# rm /portage-latest.tar.bz2*

12. Where to go from here?

12.a. Documentation

Congratulations! You now have a working Gentoo system. But where to go from here? What are your options now? What to explore first? Gentoo provides its users with lots of possibilities, and therefore lots of documented (and less documented) features.

You should definitely take a look at the next part of the Gentoo Handbook entitled Working with Gentoo which explains how to keep your software up to date, how to install more software, what USE flags are, how the Gentoo Init system works, etc.

If you are interested in optimizing your system for desktop use, or you want to learn how to configure your system to be a full working desktop system, consult our extensive Gentoo Desktop Documentation Resources. Besides, you might want to use our localization guide to make your system feel more at home.

We also have a Gentoo Security Handbook which is worth reading.

For a full listing of all our available documentation check out our Documentation Resources page.

12.b. Gentoo Online

You are of course always welcome on our Gentoo Forums or on one of our many Gentoo IRC channels.

We also have several mailinglists open to all our users. Information on how to join is contained in that page.

We'll shut up now and let you enjoy your installation :)

B. Working with Gentoo

1. A Portage Introduction

1.a. Welcome to Portage

Portage is probably Gentoo's most notable innovation in software management. With its high flexibility and enormous amount of features it is frequently seen as the best software management tool available for Linux.

Portage is completely written in Python and Bash and therefore fully visible to the users as both are scripting languages.

Most users will work with Portage through the emerge tool. This chapter is not meant to duplicate the information available from the emerge man page. For a complete rundown of emerge's options, please consult the man page:

Code Listing 1: Reading the emerge man page

$ man emerge

1.b. The Portage Tree


When we talk about packages, we often mean software titles that are available to the Gentoo users through the Portage tree. The Portage tree is a collection of ebuilds, files that contain all information Portage needs to maintain software (install, search, query, ...). These ebuilds reside in /usr/portage by default.

Whenever you ask Portage to perform some action regarding software titles, it will use the ebuilds on your system as a base. It is therefore important that you regularly update the ebuilds on your system so Portage knows about new software, security updates, etc.

Updating the Portage Tree

The Portage tree is usually updated with rsync, a fast incremental file transfer utility. Updating is fairly simple as the emerge command provides a front-end for rsync:

Code Listing 2: Updating the Portage tree

# emerge --sync

If you are unable to rsync due to firewall restrictions you can still update your Portage tree by using our daily generated Portage tree snapshots. The emerge-webrsync tool automatically fetches and installs the latest snapshot on your system:

Code Listing 3: Running emerge-webrsync

# emerge-webrsync

1.c. Maintaining Software

Searching for Software

To search through the Portage tree after software titles, you can use emerge built-in search capabilities. By default, emerge --search returns the names of packages whose title matches (either fully or partially) the given search term.

For instance, to search for all packages who have "pdf" in their name:

Code Listing 4: Searching for pdf-named packages

$ emerge --search pdf

If you want to search through the descriptions as well you can use the --searchdesc (or -S) switch:

Code Listing 5: Searching for pdf-related packages

$ emerge --searchdesc pdf

When you take a look at the output, you'll notice that it gives you a lot of information. The fields are clearly labelled so we won't go further into their meanings:

Code Listing 6: Example 'emerge --search' output

*  net-print/cups-pdf
      Latest version available: 1.5.2
      Latest version installed: [ Not Installed ]
      Size of downloaded files: 15 kB
      Description: Provides a virtual printer for CUPS to produce PDF files.
      License:     GPL-2

Installing Software

Once you've found a software title to your liking, you can easily install it with emerge: just add the package name. For instance, to install gnumeric:

Code Listing 7: Installing gnumeric

# emerge gnumeric

Since many applications depend on each other, any attempt to install a certain software package might result in the installation of several dependencies as well. Don't worry, Portage handles dependencies well. If you want to find out what Portage would install when you ask it to install a certain package, add the --pretend switch. For instance:

Code Listing 8: Pretend to install gnumeric

# emerge --pretend gnumeric

When you ask Portage to install a package, it will download the necessary source code from the internet (if necessary) and store it by default in /usr/portage/distfiles. After this it will unpack, compile and install the package. If you want Portage to only download the sources without installing them, add the --fetchonly option to the emerge command:

Code Listing 9: Download the sourcecode for gnumeric

# emerge --fetchonly gnumeric

Finding Installed Package Documentation

Many packages come with their own documentation. Sometimes, the doc USE flag determines whether the package documentation should be installed or not. You can check the existence of a doc USE flag with the emerge -vp <package name> command.

Code Listing 10: Checking the existence of a doc USE flag

(alsa-lib is just an example, of course.)
# emerge -vp alsa-lib
[ebuild  N    ] media-libs/alsa-lib-1.0.9_rc3  +doc -jack 674 kB

You can enable or disable the doc USE flag either globally in the /etc/make.conf file or per package in the /etc/portage/package.use file. You can also create a directory called /etc/portage/package.use and list it in a file inside this directory. The USE Flags chapter covers this aspect in detail.

Once the package installed, its documentation is generally found in a subdirectory named after the package under the /usr/share/doc directory. You can also list all installed files with the equery tool which is part of the app-portage/gentoolkit package.

Code Listing 11: Locating package documentation

# ls -l /usr/share/doc/alsa-lib-1.0.9_rc3
total 28
-rw-r--r--  1 root root  669 May 17 21:54 ChangeLog.gz
-rw-r--r--  1 root root 9373 May 17 21:54 COPYING.gz
drwxr-xr-x  2 root root 8560 May 17 21:54 html
-rw-r--r--  1 root root  196 May 17 21:54 TODO.gz

(Alternatively, use equery to locate interesting files:)
# equery files alsa-lib | less
* Contents of media-libs/alsa-lib-1.0.9_rc3:
(Output truncated)

Removing Software

When you want to remove a software package from your system, use emerge --unmerge. This will tell Portage to remove all files installed by that package from your system except the configuration files of that application if you have altered those after the installation. Leaving the configuration files allows you to continue working with the package if you ever decide to install it again.

However, a big warning applies: Portage will not check if the package you want to remove is required by another package. It will however warn you when you want to remove an important package that breaks your system if you unmerge it.

Code Listing 12: Removing gnumeric from the system

# emerge --unmerge gnumeric

When you remove a package from your system, the dependencies of that package that were installed automatically when you installed the software are left. To have Portage locate all dependencies that can now be removed, use emerge's --depclean functionality. We will talk about this later on.

Updating your System

To keep your system in perfect shape (and not to mention install the latest security updates) you need to update your system regularly. Since Portage only checks the ebuilds in your Portage tree you first have to update your Portage tree. When your Portage tree is updated, you can update your system with emerge --update world. In the next example, we'll also use the --ask switch which will tell Portage to display the list of packages it wants to upgrade and ask you if you want to continue:

Code Listing 13: Updating your system

# emerge --update --ask world

Portage will then search for newer version of the applications you have installed. However, it will only verify the versions for the applications you have explicitly installed (the applications listed in /var/lib/portage/world) - it does not thoroughly check their dependencies. If you want to update every single package on your system, add the --deep argument:

Code Listing 14: Updating your entire system

# emerge --update --deep world

Since security updates also happen in packages you have not explicitly installed on your system (but that are pulled in as dependencies of other programs), it is recommended to run this command once in a while.

If you have altered any of your USE flags lately you might want to add --newuse as well. Portage will then verify if the change requires the installation of new packages or recompilation of existing ones:

Code Listing 15: Performing a full update

# emerge --update --deep --newuse world


Some packages in the Portage tree don't have any real content but are used to install a collection of packages. For instance, the kde package will install a complete KDE environment on your system by pulling in various KDE-related packages as dependencies.

If you ever want to remove such a package from your system, running emerge --unmerge on the package won't have much effect as the dependencies remain on the system.

Portage has the functionality to remove orphaned dependencies as well, but since the availability of software is dynamically dependent you first need to update your entire system fully, including the new changes you applied when changing USE flags. After this you can run emerge --depclean to remove the orphaned dependencies. When this is done, you need to rebuild the applications that were dynamically linked to the now-removed software titles but don't require them anymore.

All this is handled with the following three commands:

Code Listing 16: Removing orphaned dependencies

# emerge --update --deep --newuse world
# emerge --depclean
# revdep-rebuild

revdep-rebuild is provided by the gentoolkit package; don't forget to emerge it first:

Code Listing 17: Installing the gentoolkit package

# emerge gentoolkit

1.d. When Portage is Complaining...

About SLOTs, Virtuals, Branches, Architectures and Profiles

As we stated before, Portage is extremely powerful and supports many features that other software management tools lack. To understand this, we explain a few aspects of Portage without going into too much detail.

With Portage different versions of a single package can coexist on a system. While other distributions tend to name their package to those versions (like freetype and freetype2) Portage uses a technology called SLOTs. An ebuild declares a certain SLOT for its version. Ebuilds with different SLOTs can coexist on the same system. For instance, the freetype package has ebuilds with SLOT="1" and SLOT="2".

There are also packages that provide the same functionality but are implemented differently. For instance, metalogd, sysklogd and syslog-ng are all system loggers. Applications that rely on the availability of "a system logger" cannot depend on, for instance, metalogd, as the other system loggers are as good a choice as any. Portage allows for virtuals: each system logger provides virtual/syslog so that applications can depend on virtual/syslog.

Software in the Portage tree can reside in different branches. By default your system only accepts packages that Gentoo deems stable. Most new software titles, when committed, are added to the testing branch, meaning more testing needs to be done before it is marked as stable. Although you will see the ebuilds for those software in the Portage tree, Portage will not update them before they are placed in the stable branch.

Some software is only available for a few architectures. Or the software doesn't work on the other architectures, or it needs more testing, or the developer that committed the software to the Portage tree is unable to verify if the package works on different architectures.

Each Gentoo installation adheres to a certain profile which contains, amongst other information, the list of packages that are required for a system to function normally.

Blocked Packages

Code Listing 18: Portage warning about blocked packages (with --pretend)

[blocks B     ] mail-mta/ssmtp (is blocking mail-mta/postfix-2.2.2-r1)

Code Listing 19: Portage warning about blocked packages (without --pretend)

!!! Error: the mail-mta/postfix package conflicts with another package.
!!!        both can't be installed on the same system together.
!!!        Please use 'emerge --pretend' to determine blockers. 

Ebuilds contain specific fields that inform Portage about its dependencies. There are two possible dependencies: build dependencies, declared in DEPEND and run-time dependencies, declared in RDEPEND. When one of these dependencies explicitly marks a package or virtual as being not compatible, it triggers a blockage.

To fix a blockage, you can choose to not install the package or unmerge the conflicting package first. In the given example, you can opt not to install postfix or to remove ssmtp first.

It is also possible that two packages that are yet to be installed are blocking each other. In this rare case, you should find out why you need to install both. In most cases you can do with one of the packages alone. If not, please file a bug on Gentoo's bugtracking system.

Masked Packages

Code Listing 20: Portage warning about masked packages

!!! all ebuilds that could satisfy "bootsplash" have been masked. 

Code Listing 21: Portage warning about masked packages - reason

!!! possible candidates are:

- gnome-base/gnome-2.8.0_pre1 (masked by: ~x86 keyword)
- lm-sensors/lm-sensors-2.8.7 (masked by: -sparc keyword)
- sys-libs/glibc- (masked by: -* keyword)
- dev-util/cvsd-1.0.2 (masked by: missing keyword)
- media-video/ati-gatos-4.3.0 (masked by: package.mask)
- sys-libs/glibc-2.3.2-r11 (masked by: profile)

When you want to install a package that isn't available for your system, you will receive this masking error. You should try installing a different application that is available for your system or wait until the package is put available. There is always a reason why a package is masked:

  • ~arch keyword means that the application is not tested sufficiently to be put in the stable branch. Wait a few days or weeks and try again.
  • -arch keyword or -* keyword means that the application does not work on your architecture. If you believe the package does work file a bug at our bugzilla website.
  • missing keyword means that the application has not been tested on your architecture yet. Ask the architecture porting team to test the package or test it for them and report your findings on our bugzilla website.
  • package.mask means that the package has been found corrupt, unstable or worse and has been deliberately marked as do-not-use.
  • profile means that the package has been found not suitable for your profile. The application might break your system if you installed it or is just not compatible with the profile you use.

Missing Dependencies

Code Listing 22: Portage warning about missing dependency

emerge: there are no ebuilds to satisfy ">=sys-devel/gcc-3.4.2-r4".

!!! Problem with ebuild sys-devel/gcc-3.4.2-r2
!!! Possibly a DEPEND/*DEPEND problem. 

The application you are trying to install depends on another package that is not available for your system. Please check bugzilla if the issue is known and if not, please report it. Unless you are mixing branches this should not occur and is therefore a bug.

Ambiguous Ebuild Name

Code Listing 23: Portage warning about ambiguous ebuild names

!!! The short ebuild name "aterm" is ambiguous.  Please specify
!!! one of the following fully-qualified ebuild names instead:


The application you want to install has a name that corresponds with more than one package. You need to supply the category name as well. Portage will inform you of possible matches to choose from.

Circular Dependencies

Code Listing 24: Portage warning about circular dependencies

!!! Error: circular dependencies: 

ebuild / net-print/cups-1.1.15-r2 depends on ebuild / app-text/ghostscript-7.05.3-r1
ebuild / app-text/ghostscript-7.05.3-r1 depends on ebuild / net-print/cups-1.1.15-r2 

Two (or more) packages you want to install depend on each other and can therefore not be installed. This is most likely a bug in the Portage tree. Please resync after a while and try again. You can also check bugzilla if the issue is known and if not, report it.

Fetch failed

Code Listing 25: Portage warning about fetch failed

!!! Fetch failed for sys-libs/ncurses-5.4-r5, continuing...
!!! Some fetch errors were encountered.  Please see above for details.

Portage was unable to download the sources for the given application and will try to continue installing the other applications (if applicable). This failure can be due to a mirror that has not synchronised correctly or because the ebuild points to an incorrect location. The server where the sources reside can also be down for some reason.

Retry after one hour to see if the issue still persists.

System Profile Protection

Code Listing 26: Portage warning about profile-protected package

!!! Trying to unmerge package(s) in system profile. 'sys-apps/portage'
!!! This could be damaging to your system.

You have asked to remove a package that is part of your system's core packages. It is listed in your profile as required and should therefore not be removed from the system.

Digest Verification Failures

Sometimes, when you attempt to emerge a package, it will fail with the message:

Code Listing 27: Digest verification failure

>>> checking ebuild checksums
!!! Digest verification failed:

This is a sign that something is wrong with the Portage tree -- often, it is because a developer may have made a mistake when committing a package to the tree.

When the digest verification fails, do not try to re-digest the package yourself. Running ebuild foo digest will not fix the problem; it will almost certainly make it worse!

Instead, wait an hour or two for the tree to settle down. It's likely that the error was noticed right away, but it can take a little time for the fix to trickle down the Portage tree. While you're waiting, check Bugzilla and see if anyone has reported the problem yet. If not, go ahead and file a bug for the broken package.

Once you see that the bug has been fixed, you may want to re-sync to pick up the fixed digest.

Important: This does not mean that you can re-sync your tree multiple times! As stated in the rsync policy (when you run emerge --sync), users who sync too often will be banned! In fact, it's better to just wait until your next scheduled sync, so that you don't overload the rsync servers.

2. USE flags

2.a. What are USE-flags?

The ideas behind USE-flags

When you are installing Gentoo (or any other distribution, or even operating system for that matter) you make choices depending on the environment you are working with. A setup for a server differs from a setup for a workstation. A gaming workstation differs from a 3D rendering workstation.

This is not only true for choosing what packages you want to install, but also what features a certain package should support. If you don't need OpenGL, why would you bother installing OpenGL and build OpenGL support in most of your packages? If you don't want to use KDE, why would you bother compiling packages with KDE-support if those packages work flawlessly without?

To help users in deciding what to install/activate and what not, we wanted the user to specify his/her environment in an easy way. This forces the user into deciding what they really want and eases the process for Portage, our package management system, to make useful decisions.

Definition of a USE-flag

Enter the USE-flags. Such a flag is a keyword that embodies support and dependency-information for a certain concept. If you define a certain USE-flag, Portage will know that you want support for the chosen keyword. Of course this also alters the dependency information for a package.

Let us take a look at a specific example: the kde keyword. If you do not have this keyword in your USE variable, all packages that have optional KDE support will be compiled without KDE support. All packages that have an optional KDE dependency will be installed without installing the KDE libraries (as dependency). If you have defined the kde keyword, then those packages will be compiled with KDE support, and the KDE libraries will be installed as dependency.

By correctly defining the keywords you will receive a system tailored specifically to your needs.

What USE-flags exist?

There are two types of USE-flags: global and local USE-flags.

  • A global USE-flag is used by several packages, system-wide. This is what most people see as USE-flags.
  • A local USE-flag is used by a single package to make package-specific decisions.

A list of available global USE-flags can be found online or locally in /usr/portage/profiles/use.desc.

A list of available local USE-flags can be found locally in /usr/portage/profiles/use.local.desc.

2.b. Using USE-flags

Declare permanent USE-flags

In the hope you are convinced of the importance of USE-flags we will now inform you how to declare USE-flags.

As previously mentioned, all USE-flags are declared inside the USE variable. To make it easy for users to search and pick USE-flags, we already provide a default USE setting. This setting is a collection of USE-flags we think are commonly used by the Gentoo users. This default setting is declared in the make.defaults files part of your profile.

The profile your system listens to is pointed to by the /etc/make.profile symlink. Each profile works on top of another, larger profile, the end result is therefore the sum of all profiles. The top profile is the base profile (/usr/portage/profiles/base).

Let us take a look at this default setting for the 2004.3 profile:

Code Listing 1: Cumulative make.defaults USE variable for the 2004.3 profile

(This example is the sum of the settings in base, default-linux,
 default-linux/x86 and default-linux/x86/2004.3)
USE="x86 oss apm arts avi berkdb bitmap-fonts crypt cups encode fortran f77
     foomaticdb gdbm gif gpm gtk imlib jpeg kde gnome libg++ libwww mad
     mikmod motif mpeg ncurses nls oggvorbis opengl pam pdflib png python qt
     quicktime readline sdl spell ssl svga tcpd truetype X xml2 xmms xv zlib"

As you can see, this variable already contains quite a lot of keywords. Do not alter any make.defaults file to tailor the USE variable to your needs: changes in this file will be undone when you update Portage!

To change this default setting, you need to add or remove keywords to the USE variable. This is done globally by defining the USE variable in /etc/make.conf. In this variable you add the extra USE-flags you require, or remove the USE-flags you don't want. This latter is done by prefixing the keyword with the minus-sign ("-").

For instance, to remove support for KDE and QT but add support for ldap, the following USE can be defined in /etc/make.conf:

Code Listing 2: An example USE setting in /etc/make.conf

USE="-kde -qt3 -qt4 ldap"

Declaring USE flags for individual packages

Sometimes you want to declare a certain USE flag for one (or a couple) of applications but not system-wide. To accomplish this, you will need to create the /etc/portage directory (if it doesn't exist yet) and edit /etc/portage/package.use.

For instance, if you don't want berkdb support globally but you do want it for mysql, you would add:

Code Listing 3: /etc/portage/package.use example

dev-db/mysql berkdb

You can of course also explicitly disable USE flags for a certain application. For instance, if you don't want java support in PHP:

Code Listing 4: /etc/portage/package.use 2nd example

dev-php/php -java

Declare temporary USE-flags

Sometimes you want to set a certain USE-setting only once. Instead of editing /etc/make.conf twice (to do and undo the USE-changes) you can just declare the USE-variable as environment variable. Remember that, when you re-emerge or update this application (either explicitly or as part of a system update) your changes will be lost!

As an example we will temporarily remove java from the USE-setting during the installation of mozilla.

Code Listing 5: Using USE as environment variable

# USE="-java" emerge mozilla


Of course there is a certain precedence on what setting has priority over the USE setting. You don't want to declare USE="-java" only to see that java is still used due to a setting that has a higher priority. The precedence for the USE setting is, ordered by priority (first has lowest priority):

  1. Default USE setting declared in the make.defaults files part of your profile
  2. User-defined USE setting in /etc/make.conf
  3. User-defined USE setting in /etc/portage/package.use
  4. User-defined USE setting as environment variable

To view the final USE setting as seen by Portage, run emerge --info. This will list all relevant variables (including the USE variable) with the content used by Portage.

Code Listing 6: Running emerge --info

# emerge --info

Adapting your Entire System to New USE Flags

If you have altered your USE flags and you wish to update your entire system to use the new USE flags, use emerge's --newuse option:

Code Listing 7: Rebuilding your entire system

# emerge --update --deep --newuse world

Next, run Portage's depclean to remove the conditional dependencies that were emerged on your "old" system but that have been obsoleted by the new USE flags.

Warning: Running emerge --depclean is a dangerous operation and should be handled with care. Double-check the provided list of "obsoleted" packages to make sure it doesn't remove packages you need. In the following example we add the -p switch to have depclean only list the packages without removing them.

Code Listing 8: Removing obsoleted packages

# emerge -p --depclean

When depclean has finished, run revdep-rebuild to rebuild the applications that are dynamically linked against shared objects provided by possibly removed packages. revdep-rebuild is part of the gentoolkit package; don't forget to emerge it first.

Code Listing 9: Running revdep-rebuild

# revdep-rebuild

When all this is accomplished, your system is using the new USE flag settings.

2.c. Package specific USE-flags

Viewing available USE-flags

Let us take the example of mozilla: what USE-flags does it listen to? To find out, we use emerge with the --pretend and --verbose options:

Code Listing 10: Viewing the used USE-flags

# emerge --pretend --verbose mozilla
These are the packages that I would merge, in order:

Calculating dependencies ...done!
[ebuild   R   ] www-client/mozilla-1.7.12-r2  USE="crypt gnome java mozsvg ssl
truetype xprint -debug -ipv6 -ldap -mozcalendar -mozdevelop -moznocompose
-moznoirc -moznomail -moznoxft -postgres -xinerama" 0 kB

emerge isn't the only tool for this job. In fact, we have a tool dedicated to package information called equery which resides in the gentoolkit package. First, install gentoolkit:

Code Listing 11: Installing gentoolkit

# emerge gentoolkit

Now run equery with the uses argument to view the USE-flags of a certain package. For instance, for the gnumeric package:

Code Listing 12: Using equery to view used USE-flags

# equery uses =gnumeric-1.6.3 -a
[ Searching for packages matching =gnumeric-1.6.3... ]
[ Colour Code : set unset ]
[ Legend        : Left column  (U) - USE flags from make.conf  ]
[               : Right column (I) - USE flags packages was installed with ]
[ Found these USE variables for app-office/gnumeric-1.6.3 ]
 U I
- - debug   : Tells configure and the makefiles to build for debugging.
                     Effects vary across packages, but generally it will at
                     least add -g to CFLAGS.  Remember to set FEATURES=nostrip too 
- - gnome   : Adds GNOME support
+ + python   : Adds support/bindings for the Python language
- - static   : !!do not set this during bootstrap!! Causes binaries to be
                     statically linked instead of dynamically

3. Portage Features

3.a. Portage Features

Portage has several additional features that makes your Gentoo experience even better. Many of these features rely on certain software tools that improve performance, reliability, security, ...

To enable or disable certain Portage features you need to edit /etc/make.conf's FEATURES variable which contains the various feature keywords, separated by white space. In several cases you will also need to install the additional tool on which the feature relies.

Not all features that Portage supports are listed here. For a full overview, please consult the make.conf man page:

Code Listing 1: Consulting the make.conf man page

$ man make.conf

To find out what FEATURES are default set, run emerge --info and search for the FEATURES variable or grep it out:

Code Listing 2: Finding out the FEATURES that are already set

$ emerge --info | grep FEATURES

3.b. Distributed Compiling

Using distcc

distcc is a program to distribute compilations across several, not necessarily identical, machines on a network. The distcc client sends all necessary information to the available distcc servers (running distccd) so they can compile pieces of source code for the client. The net result is a faster compilation time.

You can find more information about distcc (and how to have it work with Gentoo) in our Gentoo Distcc Documentation.

Installing distcc

Distcc ships with a graphical monitor to monitor tasks that your computer is sending away for compilation. If you use Gnome then put 'gnome' in your USE variable. However, if you don't use Gnome and would still like to have the monitor then you should put 'gtk' in your USE variable.

Code Listing 3: Installing distcc

# emerge distcc

Activating Portage Support

Add distcc to the FEATURES variable inside /etc/make.conf. Next, edit the MAKEOPTS variable to your liking. A known guideline is to fill in "-jX" with X the number of CPUs that run distccd (including the current host) plus one, but you might have better results with other numbers.

Now run distcc-config and enter the list of available distcc servers. For a simple example we assume that the available DistCC servers are (the current host), and (two "remote" hosts):

Code Listing 4: Configuring distcc to use three available distcc servers

# distcc-config --set-hosts ""

Don't forget to run the distccd daemon as well:

Code Listing 5: Starting the distccd daemons

# rc-update add distccd default
# /etc/init.d/distccd start

3.c. Caching Compilation

About ccache

ccache is a fast compiler cache. When you compile a program, it will cache intermediate results so that, whenever you recompile the same program, the compilation time is greatly reduced. In common compilations this can result in 5 to 10 times faster compilation times.

If you are interested in the ins and outs of ccache, please visit the ccache homepage.

Installing ccache

To install ccache, run emerge ccache:

Code Listing 6: Installing ccache

# emerge ccache

Activating Portage Support

Open /etc/make.conf and add ccache to the FEATURES variable. Next, add a new variable called CCACHE_SIZE and set it to "2G":

Code Listing 7: Editing CCACHE_SIZE in /etc/make.conf


To check if ccache functions, ask ccache to provide you with its statistics. Because Portage uses a different ccache home directory, you need to set the CCACHE_DIR variable as well:

Code Listing 8: Viewing ccache statistics

# CCACHE_DIR="/var/tmp/ccache" ccache -s

The /var/tmp/ccache location is Portage' default ccache home directory; if you want to alter this setting you can set the CCACHE_DIR variable in /etc/make.conf.

However, if you would run ccache, it would use the default location of ${HOME}/.ccache, which is why you needed to set the CCACHE_DIR variable when asking for the (Portage) ccache statistics.

Using ccache for non-Portage C Compiling

If you would like to use ccache for non-Portage compilations, add /usr/lib/ccache/bin to the beginning of your PATH variable (before /usr/bin). This can be accomplished by editing .bash_profile in your user's home directory. Using .bash_profile is one way to define PATH variables.

Code Listing 9: Editing .bash_profile


3.d. Binary Package Support

Creating Prebuilt Packages

Portage supports the installation of prebuilt packages. Even though Gentoo does not provide prebuilt packages by itself (except for the GRP snapshots) Portage can be made fully aware of prebuilt packages.

To create a prebuilt package you can use quickpkg if the package is already installed on your system, or emerge with the --buildpkg or --buildpkgonly options.

If you want Portage to create prebuilt packages of every single package you install, add buildpkg to the FEATURES variable.

More extended support for creating prebuilt package sets can be obtained with catalyst. For more information on catalyst please read the Catalyst Reference Manual and Catalyst Frequently Asked Questions.

Installing Prebuilt Packages

Although Gentoo doesn't provide one, you can create a central repository where you store prebuilt packages. If you want to use this repository, you need to make Portage aware of it by having the PORTAGE_BINHOST variable point to it. For instance, if the prebuilt packages are on ftp://buildhost/gentoo:

Code Listing 10: Setting PORTAGE_BINHOST in /etc/make.conf


When you want to install a prebuilt package, add the --getbinpkg option to the emerge command alongside of the --usepkg option. The former tells emerge to download the prebuilt package from the previously defined server while the latter asks emerge to try to install the prebuilt package first before fetching the sources and compiling it.

For instance, to install gnumeric with prebuilt packages:

Code Listing 11: Installing the gnumeric prebuilt package

# emerge --usepkg --getbinpkg gnumeric

More information about emerge's prebuilt package options can be found in the emerge man page:

Code Listing 12: Reading the emerge man page

$ man emerge

3.e. Fetching Files

Parallel fetch

When you are emerging a series of packages, Portage can fetch the source files for the next package in the list even while it is compiling another package, thus shortening compile times. To make use of this capability, add "parallel-fetch" to your FEATURES.


When Portage is run as root, FEATURES="userfetch" will allow Portage to drop root privileges while fetching package sources. This is a small security improvement.

4. Initscripts

4.a. Runlevels

Booting your System

When you boot your system, you will notice lots of text floating by. If you pay close attention, you will notice this text is the same every time you reboot your system. The sequence of all these actions is called the boot sequence and is (more or less) statically defined.

First, your boot loader will load the kernel image you have defined in the boot loader configuration into memory after which it tells the CPU to run the kernel. When the kernel is loaded and run, it initializes all kernel-specific structures and tasks and starts the init process.

This process then makes sure that all filesystems (defined in /etc/fstab) are mounted and ready to be used. Then it executes several scripts located in /etc/init.d, which will start the services you need in order to have a successfully booted system.

Finally, when all scripts are executed, init activates the terminals (in most cases just the virtual consoles which are hidden beneath Alt-F1, Alt-F2, etc.) attaching a special process called agetty to it. This process will then make sure you are able to log on through these terminals by running login.

Init Scripts

Now init doesn't just execute the scripts in /etc/init.d randomly. Even more, it doesn't run all scripts in /etc/init.d, only the scripts it is told to execute. It decides which scripts to execute by looking into /etc/runlevels.

First, init runs all scripts from /etc/init.d that have symbolic links inside /etc/runlevels/boot. Usually, it will start the scripts in alphabetical order, but some scripts have dependency information in them, telling the system that another script must be run before they can be started.

When all /etc/runlevels/boot referenced scripts are executed, init continues with running the scripts that have a symbolic link to them in /etc/runlevels/default. Again, it will use the alphabetical order to decide what script to run first, unless a script has dependency information in it, in which case the order is changed to provide a valid start-up sequence.

How Init Works

Of course init doesn't decide all that by itself. It needs a configuration file that specifies what actions need to be taken. This configuration file is /etc/inittab.

If you remember the boot sequence we have just described, you will remember that init's first action is to mount all filesystems. This is defined in the following line from /etc/inittab:

Code Listing 1: The system initialisation line in /etc/inittab

si::sysinit:/sbin/rc sysinit

This line tells init that it must run /sbin/rc sysinit to initialize the system. The /sbin/rc script takes care of the initialisation, so you might say that init doesn't do much -- it delegates the task of initialising the system to another process.

Second, init executed all scripts that had symbolic links in /etc/runlevels/boot. This is defined in the following line:

Code Listing 2: The system initialisation, continued

rc::bootwait:/sbin/rc boot

Again the rc script performs the necessary tasks. Note that the option given to rc (boot) is the same as the subdirectory of /etc/runlevels that is used.

Now init checks its configuration file to see what runlevel it should run. To decide this, it reads the following line from /etc/inittab:

Code Listing 3: The initdefault line


In this case (which the majority of Gentoo users will use), the runlevel id is 3. Using this information, init checks what it must run to start runlevel 3:

Code Listing 4: The runlevel definitions

l0:0:wait:/sbin/rc shutdown
l1:S1:wait:/sbin/rc single
l2:2:wait:/sbin/rc nonetwork
l3:3:wait:/sbin/rc default
l4:4:wait:/sbin/rc default
l5:5:wait:/sbin/rc default
l6:6:wait:/sbin/rc reboot

The line that defines level 3, again, uses the rc script to start the services (now with argument default). Again note that the argument of rc is the same as the subdirectory from /etc/runlevels.

When rc has finished, init decides what virtual consoles it should activate and what commands need to be run at each console:

Code Listing 5: The virtual consoles definition

c1:12345:respawn:/sbin/agetty 38400 tty1 linux
c2:12345:respawn:/sbin/agetty 38400 tty2 linux
c3:12345:respawn:/sbin/agetty 38400 tty3 linux
c4:12345:respawn:/sbin/agetty 38400 tty4 linux
c5:12345:respawn:/sbin/agetty 38400 tty5 linux
c6:12345:respawn:/sbin/agetty 38400 tty6 linux

What is a runlevel?

You have seen that init uses a numbering scheme to decide what runlevel it should activate. A runlevel is a state in which your system is running and contains a collection of scripts (runlevel scripts or initscripts) that must be executed when you enter or leave a runlevel.

In Gentoo, there are seven runlevels defined: three internal runlevels, and four user-defined runlevels. The internal runlevels are called sysinit, shutdown and reboot and do exactly what their names imply: initialize the system, powering off the system and rebooting the system.

The user-defined runlevels are those with an accompanying /etc/runlevels subdirectory: boot, default, nonetwork and single. The boot runlevel starts all system-necessary services which all other runlevels use. The remaining three runlevels differ in what services they start: default is used for day-to-day operations, nonetwork is used in case no network connectivity is required, and single is used when you need to fix the system.

Working with the Init Scripts

The scripts that the rc process starts are called init scripts. Each script in /etc/init.d can be executed with the arguments start, stop, restart, pause, zap, status, ineed, iuse, needsme, usesme or broken.

To start, stop or restart a service (and all depending services), start, stop and restart should be used:

Code Listing 6: Starting Postfix

# /etc/init.d/postfix start

Note: Only the services that need the given service are stopped or restarted. The other depending services (those that use the service but don't need it) are left untouched.

If you want to stop a service, but not the services that depend on it, you can use the pause argument:

Code Listing 7: Stopping Postfix but keep the depending services running

# /etc/init.d/postfix pause

If you want to see what status a service has (started, stopped, paused, ...) you can use the status argument:

Code Listing 8: Status information for postfix

# /etc/init.d/postfix status

If the status information tells you that the service is running, but you know that it is not, then you can reset the status information to "stopped" with the zap argument:

Code Listing 9: Resetting status information for postfix

# /etc/init.d/postfix zap

To also ask what dependencies the service has, you can use iuse or ineed. With ineed you can see the services that are really necessary for the correct functioning of the service. iuse on the other hand shows the services that can be used by the service, but are not necessary for the correct functioning.

Code Listing 10: Requesting a list of all necessary services on which Postfix depends

# /etc/init.d/postfix ineed

Similarly, you can ask what services require the service (needsme) or can use it (usesme):

Code Listing 11: Requesting a list of all services that require Postfix

# /etc/init.d/postfix needsme

Finally, you can ask what dependencies the service requires that are missing:

Code Listing 12: Requesting a list of missing dependencies for Postfix

# /etc/init.d/postfix broken

4.b. Working with rc-update

What is rc-update?

Gentoo's init system uses a dependency-tree to decide what service needs to be started first. As this is a tedious task that we wouldn't want our users to have to do manually, we have created tools that ease the administration of the runlevels and init scripts.

With rc-update you can add and remove init scripts to a runlevel. The rc-update tool will then automatically ask the script to rebuild the dependency tree.

Adding and Removing Services

You have already added init scripts to the "default" runlevel during the installation of Gentoo. At that time you might not have had a clue what the "default" is for, but now you should. The rc-update script requires a second argument that defines the action: add, del or show.

To add or remove an init script, just give rc-update the add or del argument, followed by the init script and the runlevel. For instance:

Code Listing 13: Removing Postfix from the default runlevel

# rc-update del postfix default

The rc-update show command will show all the available init scripts and list at which runlevels they will execute:

Code Listing 14: Receiving init script information

# rc-update show

4.c. Configuring Services

Why the Need for Extra Configuration?

Init scripts can be quite complex. It is therefore not really desirable to have the users edit the init script directly, as it would make it more error-prone. It is however important to be able to configure such a service. For instance, you might want to give more options to the service itself.

A second reason to have this configuration outside the init script is to be able to update the init scripts without the fear that your configuration changes will be undone.

The /etc/conf.d Directory

Gentoo provides an easy way to configure such a service: every init script that can be configured has a file in /etc/conf.d. For instance, the apache2 initscript (called /etc/init.d/apache2) has a configuration file called /etc/conf.d/apache2, which can contain the options you want to give to the Apache 2 server when it is started:

Code Listing 15: Variable defined in /etc/conf.d/apache2


Such a configuration file contains variables and variables alone (just like /etc/make.conf), making it very easy to configure services. It also allows us to provide more information about the variables (as comments).

4.d. Writing Init Scripts

Do I Have To?

No, writing an init script is usually not necessary as Gentoo provides ready-to-use init scripts for all provided services. However, you might have installed a service without using Portage, in which case you will most likely have to create an init script.

Do not use the init script provided by the service if it isn't explicitly written for Gentoo: Gentoo's init scripts are not compatible with the init scripts used by other distributions!


The basic layout of an init script is shown below.

Code Listing 16: Basic layout of an init script


depend() {
  (Dependency information)

start() {
  (Commands necessary to start the service)

stop() {
  (Commands necessary to stop the service)

restart() {
  (Commands necessary to restart the service)


Any init script requires the start() function to be defined. All other sections are optional.


There are two dependencies you can define: use and need. As we have mentioned before, the need dependency is more strict than the use dependency. Following this dependency type you enter the service you depend on, or the virtual dependency.

A virtual dependency is a dependency that a service provides, but that is not provided solely by that service. Your init script can depend on a system logger, but there are many system loggers available (metalogd, syslog-ng, sysklogd, ...). As you cannot need every single one of them (no sensible system has all these system loggers installed and running) we made sure that all these services provide a virtual dependency.

Let us take a look at the dependency information for the postfix service.

Code Listing 17: Dependency information for Postfix

depend() {
  need net
  use logger dns
  provide mta

As you can see, the postfix service:

  • requires the (virtual) net dependency (which is provided by, for instance, /etc/init.d/net.eth0)
  • uses the (virtual) logger dependency (which is provided by, for instance, /etc/init.d/syslog-ng)
  • uses the (virtual) dns dependency (which is provided by, for instance, /etc/init.d/named)
  • provides the (virtual) mta dependency (which is common for all mail servers)

Controlling the Order

In some cases you might not require a service, but want your service to be started before (or after) another service if it is available on the system (note the conditional - this is no dependency anymore) and run in the same runlevel (note the conditional - only services in the same runlevel are involved). You can provide this information using the before or after settings.

As an example we view the settings of the Portmap service:

Code Listing 18: The depend() function in the Portmap service

depend() {
  need net
  before inetd
  before xinetd

You can also use the "*" glob to catch all services in the same runlevel, although this isn't advisable.

Code Listing 19: Running an init script as first script in the runlevel

depend() {
  before *

If your service must write to local disks, it should need localmount. If it places anything in /var/run such as a pidfile, then should start after bootmisc:

Code Listing 20: Example depend() function

depend() {
  need localmount
  after bootmisc

Standard Functions

Next to the depend() functionality, you also need to define the start() function. This one contains all the commands necessary to initialize your service. It is advisable to use the ebegin and eend functions to inform the user about what is happening:

Code Listing 21: Example start() function

start() {
  ebegin "Starting my_service"
  start-stop-daemon --start --exec /path/to/my_service \
    --pidfile /path/to/my_pidfile
  eend $?

Both --exec and --pidfile should be used in start and stop functions. If the service does not create a pidfile, then use --make-pidfile if possible, though you should test this to be sure. Otherwise, don't use pidfiles. You can also add --quiet to the start-stop-daemon options, but this is not recommended unless the service is extremely verbose. Using --quiet may hinder debugging if the service fails to start.

Note: Make sure that --exec actually calls a service and not just a shell script that launches services and exits -- that's what the init script is supposed to do.

If you need more examples of the start() function, please read the source code of the available init scripts in your /etc/init.d directory.

Other functions you can define are: stop() and restart(). You are not obliged to define these functions! Our init system is intelligent enough to fill these functions by itself if you use start-stop-daemon.

Although you do not have to create a stop() function, here is an example:

Code Listing 22: Example stop() function

stop() {
  ebegin "Stopping my_service"
  start-stop-daemon --stop --exec /path/to/my_service \
    --pidfile /path/to/my_pidfile
  eend $?

If your service runs some other script (for example, bash, python, or perl), and this script later changes names (for example, to foo), then you will need to add --name to start-stop-daemon. You must specify the name that your script will be changed to. In this example, a service starts, which changes names to foo:

Code Listing 23: A service that starts the foo script

start() {
  ebegin "Starting my_script"
  start-stop-daemon --start --exec /path/to/my_script \
    --pidfile /path/to/my_pidfile --name foo
  eend $?

start-stop-daemon has an excellent man page available if you need more information:

Code Listing 24: Getting the man page for start-stop-daemon

$ man start-stop-daemon

Gentoo's init script syntax is based on the Bourne Again Shell (bash) so you are free to use bash-compatible constructs inside your init script.

Adding Custom Options

If you want your init script to support more options than the ones we have already encountered, you should add the option to the opts variable, and create a function with the same name as the option. For instance, to support an option called restartdelay:

Code Listing 25: Supporting the restartdelay option

opts="${opts} restartdelay"

restartdelay() {
  sleep 3    # Wait 3 seconds before starting again

Service Configuration Variables

You don't have to do anything to support a configuration file in /etc/conf.d: if your init script is executed, the following files are automatically sourced (i.e. the variables are available to use):

  • /etc/conf.d/<your init script>
  • /etc/conf.d/basic
  • /etc/rc.conf

Also, if your init script provides a virtual dependency (such as net), the file associated with that dependency (such as /etc/conf.d/net) will be sourced too.

4.e. Changing the Runlevel Behaviour

Who might benefit from this?

Many laptop users know the situation: at home you need to start net.eth0 while you don't want to start net.eth0 while you're on the road (as there is no network available). With Gentoo you can alter the runlevel behaviour to your own will.

For instance you can create a second "default" runlevel which you can boot that has other init scripts assigned to it. You can then select at boottime what default runlevel you want to use.

Using softlevel

First of all, create the runlevel directory for your second "default" runlevel. As an example we create the offline runlevel:

Code Listing 26: Creating a runlevel directory

# mkdir /etc/runlevels/offline

Add the necessary init scripts to the newly created runlevels. For instance, if you want to have an exact copy of your current default runlevel but without net.eth0:

Code Listing 27: Adding the necessary init scripts

(Copy all services from default runlevel to offline runlevel)

# cd /etc/runlevels/default
# for service in *; do rc-update add $service offline; done
(Remove unwanted service from offline runlevel)
# rc-update del net.eth0 offline
(Display active services for offline runlevel)
# rc-update show offline
(Partial sample Output)

               acpid | offline
          domainname | offline
               local | offline
            net.eth0 |

Now edit your bootloader configuration and add a new entry for the offline runlevel. For instance, in /boot/grub/grub.conf:

Code Listing 28: Adding an entry for the offline runlevel

title Gentoo Linux Offline Usage
  root (hd0,0)
  kernel (hd0,0)/kernel-2.4.25 root=/dev/hda3 softlevel=offline

Voilą, you're all set now. If you boot your system and select the newly added entry at boot, the offline runlevel will be used instead of the default one.

Using bootlevel

Using bootlevel is completely analogous to softlevel. The only difference here is that you define a second "boot" runlevel instead of a second "default" runlevel.

5. Environment Variables

5.a. Environment Variables?

What they are

An environment variable is a named object that contains information used by one or more applications. Many users (and especially those new to Linux) find this a bit weird or unmanageable. However, this is a mistake: by using environment variables one can easily change a configuration setting for one or more applications.

Important Examples

The following table lists a number of variables used by a Linux system and describes their use. Example values are presented after the table.

Variable Description
PATH This variable contains a colon-separated list of directories in which your system looks for executable files. If you enter a name of an executable (such as ls, rc-update or emerge) but this executable is not located in a listed directory, your system will not execute it (unless you enter the full path as command, such as /bin/ls).
ROOTPATH This variable has the same function as PATH, but this one only lists the directories that should be checked when the root-user enters a command.
LDPATH This variable contains a colon-separated list of directories in which the dynamical linker searches through to find a library.
MANPATH This variable contains a colon-separated list of directories in which the man command searches for the man pages.
INFODIR This variable contains a colon-separated list of directories in which the info command searches for the info pages.
PAGER This variable contains the path to the program used to list the contents of files through (such as less or more).
EDITOR This variable contains the path to the program used to change the contents of files with (such as nano or vi).
KDEDIRS This variable contains a colon-separated list of directories which contain KDE-specific material.
CLASSPATH This variable contains a colon-separated list of directories which contain Java classes.
CONFIG_PROTECT This variable contains a space-delimited list of directories which should be protected by Portage during updates.
CONFIG_PROTECT_MASK This variable contains a space-delimited list of directories which should not be protected by Portage during updates.

Below you will find an example definition of all these variables:

Code Listing 1: Example definitions

CONFIG_PROTECT="/usr/X11R6/lib/X11/xkb /opt/tomcat/conf \
                /usr/kde/3.1/share/config /usr/share/texmf/tex/generic/config/ \
                /usr/share/texmf/tex/platex/config/ /usr/share/config"

5.b. Defining Variables Globally

The /etc/env.d Directory

To centralise the definitions of these variables, Gentoo introduced the /etc/env.d directory. Inside this directory you will find a number of files, such as 00basic, 05gcc, etc. which contain the variables needed by the application mentioned in their name.

For instance, when you installed gcc, a file called 05gcc was created by the ebuild which contains the definitions of the following variables:

Code Listing 2: /etc/env.d/05gcc


Other distributions tell you to change or add such environment variable definitions in /etc/profile or other locations. Gentoo on the other hand makes it easy for you (and for Portage) to maintain and manage the environment variables without having to pay attention to the numerous files that can contain environment variables.

For instance, when gcc is updated, the /etc/env.d/05gcc file is updated too without requesting any user-interaction.

This not only benefits Portage, but also you, as user. Occasionally you might be asked to set a certain environment variable system-wide. As an example we take the http_proxy variable. Instead of messing about with /etc/profile, you can now just create a file (/etc/env.d/99local) and enter your definition(s) in it:

Code Listing 3: /etc/env.d/99local


By using the same file for all your variables, you have a quick overview on the variables you have defined yourself.

The env-update Script

Several files in /etc/env.d define the PATH variable. This is not a mistake: when you run env-update, it will append the several definitions before it updates the environment variables, thereby making it easy for packages (or users) to add their own environment variable settings without interfering with the already existing values.

The env-update script will append the values in the alphabetical order of the /etc/env.d files. The file names must begin with two decimal digits.

Code Listing 4: Update order used by env-update

         00basic        99kde-env       99local

The concatenation of variables does not always happen, only with the following variables: KDEDIRS, PATH, CLASSPATH, LDPATH, MANPATH, INFODIR, INFOPATH, ROOTPATH, CONFIG_PROTECT, CONFIG_PROTECT_MASK, PRELINK_PATH and PRELINK_PATH_MASK. For all other variables the latest defined value (in alphabetical order of the files in /etc/env.d) is used.

When you run env-update, the script will create all environment variables and place them in /etc/profile.env (which is used by /etc/profile). It will also extract the information from the LDPATH variable and use that to create /etc/ After this, it will run ldconfig to recreate the /etc/ file used by the dynamical linker.

If you want to notice the effect of env-update immediately after you run it, execute the following command to update your environment. Users who have installed Gentoo themselves will probably remember this from the installation instructions:

Code Listing 5: Updating the environment

# env-update && source /etc/profile

Note: The above command only updates the variables in your current terminal, new consoles, and their children. Thus, if you are working in X11, you will need to either type source /etc/profile in every new terminal you open or restart X so that all new terminals source the new variables. If you use a login manager, become root and type /etc/init.d/xdm restart. If not, you will need to logout and log back in for X to spawn children with the new variable values.

5.c. Defining Variables Locally

User Specific

You do not always want to define an environment variable globally. For instance, you might want to add /bin and the current working directory (the directory you are in) to the PATH variable but don't want all other users on your system to have that in their PATH too. If you want to define an environment variable locally, you should use ~/.bashrc or ~/.bash_profile:

Code Listing 6: Extending PATH for local usage in ~/.bashrc

(A colon followed by no directory is treated as the current working directory)

When you relogin, your PATH variable will be updated.

Session Specific

Sometimes even stricter definitions are requested. You might want to be able to use binaries from a temporary directory you created without using the path to the binaries themselves or editing ~/.bashrc for the short time you need it.

In this case, you can just define the PATH variable in your current session by using the export command. As long as you don't log out, the PATH variable will be using the temporary settings.

Code Listing 7: Defining a session-specific environment variable

# export PATH="${PATH}:/tmp/usr/bin"

C. Working with Portage

1. Files and Directories

1.a. Portage Files

Configuration Directives

Portage comes with a default configuration stored in /etc/make.globals. When you take a look at it, you'll notice that all Portage configuration is handled through variables. What variables Portage listens to and what they mean are described later.

Since many configuration directives differ between architectures, Portage also has default configuration files which are part of your profile. Your profile is pointed to by the /etc/make.profile symlink; Portage' configurations are set in the make.defaults files of your profile and all parent profiles. We'll explain more about profiles and the /etc/make.profile directory later on.

If you're planning on changing a configuration variable, don't alter /etc/make.globals or make.defaults. Instead use /etc/make.conf which has precedence over the previous files. You'll also find a /etc/make.conf.example. As the name implies, this is merely an example file - Portage does not read in this file.

You can also define a Portage configuration variable as an environment variable, but we don't recommend this.

Profile-Specific Information

We've already encountered the /etc/make.profile directory. Well, this isn't exactly a directory but a symbolic link to a profile, by default one inside /usr/portage/profiles although you can create your own profiles elsewhere and point to them. The profile this symlink points to is the profile to which your system adheres.

A profile contains architecture-specific information for Portage, such as a list of packages that belong to the system corresponding with that profile, a list of packages that don't work (or are masked-out) for that profile, etc.

User-Specific Configuration

When you need to override Portage's behaviour regarding the installation of software, you will end up editing files within /etc/portage. You are highly recommended to use files within /etc/portage and highly discouraged to override the behaviour through environment variables!

Within /etc/portage you can create the following files:

  • package.mask which lists the packages you never want Portage to install
  • package.unmask which lists the packages you want to be able to install even though the Gentoo developers highly discourage you from emerging them
  • package.keywords which lists the packages you want to be able to install even though the package hasn't been found suitable for your system or architecture (yet)
  • package.use which lists the USE flags you want to use for certain packages without having the entire system use those USE flags

More information about the /etc/portage directory and a full list of possible files you can create can be found in the Portage man page:

Code Listing 1: Reading the Portage man page

$ man portage

Changing Portage File & Directory Locations

The previously mentioned configuration files cannot be stored elsewhere - Portage will always look for those configuration files at those exact locations. However, Portage uses many other locations for various purposes: build directory, source code storage, Portage tree location, ...

All these purposes have well-known default locations but can be altered to your own taste through /etc/make.conf. The rest of this chapter explains what special-purpose locations Portage uses and how to alter their placement on your filesystem.

This document isn't meant to be used as a reference though. If you need 100% coverage, please consult the Portage and make.conf man pages:

Code Listing 2: Reading the Portage and make.conf man pages

$ man portage
$ man make.conf

1.b. Storing Files

The Portage Tree

The Portage tree default location is /usr/portage. This is defined by the PORTDIR variable. When you store the Portage tree elsewhere (by altering this variable), don't forget to change the /etc/make.profile symbolic link accordingly.

If you alter the PORTDIR variable, you might want to alter the following variables as well since they will not notice the PORTDIR change. This is due to how Portage handles variables: PKGDIR, DISTDIR, RPMDIR.

Prebuilt Binaries

Even though Portage doesn't use prebuilt binaries by default, it has extensive support for them. When you ask Portage to work with prebuilt packages, it will look for them in /usr/portage/packages. This location is defined by the PKGDIR variable.

Source Code

Application source code is stored in /usr/portage/distfiles by default. This location is defined by the DISTDIR variable.

RPM Files

Even though Portage cannot use RPM files, it is able to generate them using the ebuild command (see The Ebuild Application). The default location where Portage stores RPM files is /usr/portage/rpm and is defined by the RPMDIR variable.

Portage Database

Portage stores the state of your system (what packages are installed, what files belong to which package, ...) in /var/db/pkg. Do not alter these files manually! It might break Portage's knowledge of your system.

Portage Cache

The Portage cache (with modification times, virtuals, dependency tree information, ...) is stored in /var/cache/edb. This location really is a cache: you can clean it if you are not running any portage-related application at that moment.

1.c. Building Software

Temporary Portage Files

Portage's temporary files are stored in /var/tmp by default. This is defined by the PORTAGE_TMPDIR variable.

If you alter the PORTAGE_TMPDIR variable, you might want to alter the following variables as well since they will not notice the PORTAGE_TMPDIR change. This is due to how Portage handles variables: BUILD_PREFIX.

Building Directory

Portage creates specific build directories for each package it emerges inside /var/tmp/portage. This location is defined by the BUILD_PREFIX variable.

Live Filesystem Location

By default Portage installs all files on the current filesystem (/), but you can change this by setting the ROOT environment variable. This is useful when you want to create new build images.

1.d. Logging Features

Ebuild Logging

Portage can create per-ebuild logfiles, but only when the PORT_LOGDIR variable is set to a location that is writable by Portage (the portage user). By default this variable is unset. If you don't set PORT_LOGDIR, then you won't receive any build logs with the current logging system, though you may receive some logs from the new elog. If you do have PORT_LOGDIR defined and you use elog, you will receive build logs and any logs saved by elog, as explained below.

Portage offers fine-grained control over logging through the use of elog:

  • PORTAGE_ELOG_CLASSES: This is where you set what kinds of messages to be logged. You can use any space-separated combination of info, warn, error, and log.
    • info: Logs "einfo" messages printed by an ebuild
    • warn: Logs "ewarn" messages printed by an ebuild
    • error: Logs "eerror" messages printed by an ebuild
    • log: Logs the "elog" messages found in some ebuilds
  • PORTAGE_ELOG_SYSTEM: This selects the module(s) to process the log messages. If left empty, logging is disabled. You can use any space-separated combination of save, custom, syslog, and mail. You must select at least one module in order to use elog.
    • save: This saves one log per package in $PORT_LOGDIR/elog, or /var/log/portage/elog if $PORT_LOGDIR is not defined.
    • custom: Passes all messages to a user-defined command in $PORTAGE_ELOG_COMMAND; this will be discussed later.
    • syslog: Sends all messages to the installed system logger.
    • mail: Passes all messages to a user-defined mailserver in $PORTAGE_ELOG_MAILURI; this will be discussed later. The mail features of elog require >=portage-2.1.1.
  • PORTAGE_ELOG_COMMAND: This is only used when the custom module is enabled. Here is where you specify a command to process log messages. Note that you can make use of two variables: ${PACKAGE} is the package name and version, while ${LOGFILE} is the absolute path to the logfile. Here's one possible usage:
    • PORTAGE_ELOG_COMMAND="/path/to/logger -p '\${PACKAGE}' -f '\${LOGFILE}'"
  • PORTAGE_ELOG_MAILURI: This contains settings for the mail module such as address, user, password, mailserver, and port number. The default setting is "root@localhost localhost".
  • Here's an example for an smtp server that requires username and password-based authentication on a particular port (the default is port 25):
    • PORTAGE_ELOG_MAILURI="user@some.domain username:password@smtp.some.domain:995"
  • PORTAGE_ELOG_MAILFROM: Allows you to set the "from" address of log mails; defaults to "portage" if unset.
  • PORTAGE_ELOG_MAILSUBJECT: Allows you to create a subject line for log mails. Note that you can make use of two variables: ${PACKAGE} will display the package name and version, while ${HOST} is the fully qualified domain name of the host Portage is running on.
  • Here's one possible use:
    • PORTAGE_ELOG_MAILSUBJECT="package \${PACKAGE} was merged on \${HOST} with some messages"

Important: If you used enotice with Portage-2.0.*, you must completely remove enotice, as it is incompatible with elog.

2. Configuring through Variables

2.a. Portage Configuration

As noted previously, Portage is configurable through many variables which you should define in /etc/make.conf. Please refer to the make.conf man page for more and complete information:

EDITED: Here are the right entries in your make.conf
CFLAGS="-O2 -pipe -msse3 -march=athlon64"
INPUT_DEVICES="keyboard mouse synaptics"

The compiler flags are taken from the gentoo wiki entry about safe c flags,
You could alternatively change the VIDE_CARDS flag to radeon, but the open source
ati driver is kindof buggy and has a quite bad performance. But its up to you

Code Listing 1: Reading the make.conf man page

$ man make.conf

2.b. Build-specific Options

Configure and Compiler Options

When Portage builds applications, it passes the contents of the following variables to the compiler and configure script:

  • CFLAGS & CXXFLAGS define the desired compiler flags for C and C++ compiling.
  • CHOST defines the build host information for the application's configure script
  • MAKEOPTS is passed to the make command and is usually set to define the amount of parallelism used during the compilation. More information about the make options can be found in the make man page.

The USE variable is also used during configure and compilations but has been explained in great detail in previous chapters.

Merge Options

When Portage has merged a newer version of a certain software title, it will remove the obsoleted files of the older version from your system. Portage gives the user a 5 second delay before unmerging the older version. These 5 seconds are defined by the CLEAN_DELAY variable.

You can tell emerge to use certain options every time it is run by setting EMERGE_DEFAULT_OPTS. Some useful options would be --ask, --verbose, --tree, and so on.

2.c. Configuration File Protection

Portage's Protected Locations

Portage overwrites files provided by newer versions of a software title if the files aren't stored in a protected location. These protected locations are defined by the CONFIG_PROTECT variable and are generally configuration file locations. The directory listing is space-delimited.

A file that would be written in such a protected location is renamed and the user is warned about the presence of a newer version of the (presumable) configuration file.

You can find out about the current CONFIG_PROTECT setting from the emerge --info output:

Code Listing 2: Getting the CONFIG_PROTECT setting

$ emerge --info | grep 'CONFIG_PROTECT='

More information about Portage's Configuration File Protection is available through emerge:

Code Listing 3: More information about Configuration File Protection

$ emerge --help config

Excluding Directories

To 'unprotect' certain subdirectories of protected locations you can use the CONFIG_PROTECT_MASK variable.

2.d. Download Options

Server Locations

When the requested information or data is not available on your system, Portage will retrieve it from the Internet. The server locations for the various information and data channels are defined by the following variables:

  • GENTOO_MIRRORS defines a list of server locations which contain source code (distfiles)
  • PORTAGE_BINHOST defines a particular server location containing prebuilt packages for your system

A third setting involves the location of the rsync server which you use when you update your Portage tree:

  • SYNC defines a particular server which Portage uses to fetch the Portage tree from

The GENTOO_MIRRORS and SYNC variables can be set automatically through the mirrorselect application. You need to emerge mirrorselect first before you can use it. For more information, see mirrorselect's online help:

Code Listing 4: More information about mirrorselect

# mirrorselect --help

If your environment requires you to use a proxy server, you can use the HTTP_PROXY, FTP_PROXY and RSYNC_PROXY variables to declare a proxy server.

Fetch Commands

When Portage needs to fetch source code, it uses wget by default. You can change this through the FETCHCOMMAND variable.

Portage is able to resume partially downloaded source code. It uses wget by default, but this can be altered through the RESUMECOMMAND variable.

Make sure that your FETCHCOMMAND and RESUMECOMMAND stores the source code in the correct location. Inside the variables you should use \${URI} and \${DISTDIR} to point to the source code location and distfiles location respectively.

You can also define protocol-specific handlers with FETCHCOMMAND_HTTP, FETCHCOMMAND_FTP, RESUMECOMMAND_HTTP, RESUMECOMMAND_FTP, and so on.

Rsync Settings

You cannot alter the rsync command used by Portage to update the Portage tree, but you can set some variables related to the rsync command:

  • PORTAGE_RSYNC_OPTS sets a number of default variables used during sync, each space-separated. These shouldn't be changed unless you know exactly what you're doing. Note that certain absolutely required options will always be used even if PORTAGE_RSYNC_OPTS is empty.
    • --recursive: Thoroughly checks all category and package directories
    • --times: Preserves file modification times
    • --exclude='/distfiles' --exclude='/local' --exclude='/packages': These settings tell Portage to not tamper with the locations of downloaded package files (which is specified in DISTDIR), any local Portage overlay (specified in PORTDIR_OVERLAY), and any user-compiled binary packages. Note that any of these options can be overriden with --exclude='!', should you wish Portage to modify them.
    • --compress: Compresses the data transmitted during sync
    • --whole-file: Sends data as whole files, rather than block transfers
  • PORTAGE_RSYNC_EXTRA_OPTS can be used to set additional options when syncing. Each option should be space separated.
    • --timeout=<number>: This defines the number of seconds an rsync connection can idle before rsync sees the connection as timed-out. This variable defaults to 180 but dialup users or individuals with slow computers might want to set this to 300 or higher.
    • --exclude-from=/etc/portage/rsync_excludes: This points to a file listing the packages and/or categories rsync should ignore during the update process. In this case, it points to /etc/portage/rsync_excludes. Please read Using a Portage Tree Subset for the syntax of this file.
    • --quiet: Reduces output to the screen
    • --verbose: Prints a complete filelist
    • --progress: Displays a progress meter for each file
  • PORTAGE_RSYNC_RETRIES defines how many times rsync should try connecting to the mirror pointed to by the SYNC variable before bailing out. This variable defaults to 3.

For more information on these options and others, please read man rsync.

2.e. Gentoo Configuration

Branch Selection

You can change your default branch with the ACCEPT_KEYWORDS variable. It defaults to your architecture's stable branch. More information on Gentoo's branches can be found in the next chapter.

Portage Features

You can activate certain Portage features through the FEATURES variable. The Portage Features have been discussed in previous chapters, such as Portage Features.

2.f. Portage Behaviour

Resource Management

With the PORTAGE_NICENESS variable you can augment or reduce the nice value Portage runs with. The PORTAGE_NICENESS value is added to the current nice value.

For more information about nice values, see the nice man page:

Code Listing 5: More information about nice

$ man nice

Output Behaviour

The NOCOLOR, which defaults to "false", defines if Portage should disable the use of coloured output.

3. Mixing Software Branches

3.a. Using One Branch

The Stable Branch

The ACCEPT_KEYWORDS variable defines what software branch you use on your system. It defaults to the stable software branch for your architecture, for instance x86.

We recommend that you only use the stable branch. However, if you don't care about stability this much and you want to help out Gentoo by submitting bugreports to, read on.

The Testing Branch

If you want to use more recent software, you can consider using the testing branch instead. To have Portage use the testing branch, add a ~ in front of your architecture.

The testing branch is exactly what it says - Testing. If a package is in testing, it means that the developers feel that it is functional but has not been thoroughly tested. You could very well be the first to discover a bug in the package in which case you could file a bugreport to let the developers know about it.

Beware though, you might notice stability issues, imperfect package handling (for instance wrong/missing dependencies), too frequent updates (resulting in lots of building) or broken packages. If you do not know how Gentoo works and how to solve problems, we recommend that you stick with the stable and tested branch.

For example, to select the testing branch for the x86 architecture, edit /etc/make.conf and set:

Code Listing 1: Setting the ACCEPT_KEYWORDS variable


If you update your system now, you will find out that lots of packages will be updated. Mind you though: when you have updated your system to use the testing branch there is usually no easy way back to the stable, official branch (except for using backups of course).

3.b. Mixing Stable with Testing

The package.keywords location

You can ask Portage to allow the testing branch for particular packages but use the stable branch for the rest of the system. To achieve this, add the package category and name you want to use the testing branch of in /etc/portage/package.keywords. You can also create a directory (with the same name) and list the package in the files under that directory. For instance, to use the testing branch for gnumeric:

Code Listing 2: /etc/portage/package.keywords setting for gnumeric, full line

app-office/gnumeric ~x86

Test Particular Versions

If you want to use a specific software version from the testing branch but you don't want Portage to use the testing branch for subsequent versions, you can add in the version in the package.keywords location. In this case you must use the = operator. You can also enter a version range using the <=, <, > or >= operators.

In any case, if you add version information, you must use an operator. If you leave out version information, you cannot use an operator.

In the following example we ask Portage to accept gnumeric-1.2.13:

Code Listing 3: Enabling a particular gnumeric test version

=app-office/gnumeric-1.2.13 ~x86

3.c. Using Masked Packages

The package.unmask location

The Gentoo developers do not support the use of this location. Please exercise due caution when doing so. Support requests related to package.unmask and/or package.mask will not be answered. You have been warned.

When a package has been masked by the Gentoo developers and you still want to use it despite the reason mentioned in the package.mask file (situated in /usr/portage/profiles by default), add the exact same line in the /etc/portage/package.unmask file (or in a file in that directory if it is a directory).

For instance, if =net-mail/hotwayd-0.8 is masked, you can unmask it by adding the exact same line in the package.unmask location:

Code Listing 4: /etc/portage/package.unmask


The package.mask location

When you don't want Portage to take a certain package or a specific version of a package into account you can mask it yourself by adding an appropriate line to the /etc/portage/package.mask location (either in that file or in a file in this directory).

For instance, if you don't want Portage to install newer kernel sources than gentoo-sources-, you add the following line at the package.mask location:

Code Listing 5: /etc/portage/package.mask example


4. Additional Portage Tools

4.a. etc-update

etc-update is a tool that aids in merging the ._cfg0000_<name> files. It provides an interactive merging setup and can also auto-merge trivial changes. ._cfg0000_<name> files are generated by Portage when it wants to overwrite a file in a directory protected by the CONFIG_PROTECT variable.

Running etc-update is pretty straight-forward:

Code Listing 1: Running etc-update

# etc-update

After merging the straightforward changes, you will be prompted with a list of protected files that have an update waiting. At the bottom you are greeted by the possible options:

Code Listing 2: etc-update options

Please select a file to edit by entering the corresponding number.
              (-1 to exit) (-3 to auto merge all remaining files)
                           (-5 to auto-merge AND not use 'mv -i'):

If you enter -1, etc-update will exit and discontinue any further changes. If you enter -3 or -5, all listed configuration files will be overwritten with the newer versions. It is therefore very important to first select the configuration files that should not be automatically updated. This is simply a matter of entering the number listed to the left of that configuration file.

As an example, we select the configuration file /etc/pear.conf:

Code Listing 3: Updating a specific configuration file

Beginning of differences between /etc/pear.conf and /etc/._cfg0000_pear.conf
End of differences between /etc/pear.conf and /etc/._cfg0000_pear.conf
1) Replace original with update
2) Delete update, keeping original as is
3) Interactively merge original with update
4) Show differences again

You can now see the differences between the two files. If you believe that the updated configuration file can be used without problems, enter 1. If you believe that the updated configuration file isn't necessary, or doesn't provide any new or useful information, enter 2. If you want to interactively update your current configuration file, enter 3.

There is no point in further elaborating the interactive merging here. For completeness sake, we will list the possible commands you can use while you are interactively merging the two files. You are greeted with two lines (the original one, and the proposed new one) and a prompt at which you can enter one of the following commands:

Code Listing 4: Commands available for the interactive merging

ed:     Edit then use both versions, each decorated with a header.
eb:     Edit then use both versions.
el:     Edit then use the left version.
er:     Edit then use the right version.
e:      Edit a new version.
l:      Use the left version.
r:      Use the right version.
s:      Silently include common lines.
v:      Verbosely include common lines.
q:      Quit.

When you have finished updating the important configuration files, you can now automatically update all the other configuration files. etc-update will exit if it doesn't find any more updateable configuration files.

4.b. dispatch-conf

Using dispatch-conf you are able to merge updates to your configuration files while keeping track of all changes. dispatch-conf stores the differences between the configuration files as patches or by using the RCS revision system.

Like etc-update, you can ask to keep the configuration file as-is, use the new configuration file, edit the current one or merge the changes interactively. However, dispatch-conf also has some nice additional features:

  • Automatically merge configuration file updates that only contain updates to comments
  • Automatically merge configuration files which only differ in the amount of whitespace

Make certain you edit /etc/dispatch-conf.conf first and create the directory referenced by the archive-dir variable.

For more information, check out the dispatch-conf man page:

Code Listing 5: Reading the dispatch-conf man page

$ man dispatch-conf

4.c. quickpkg

With quickpkg you can create archives of the packages that are already merged on your system. These archives can be used as prebuilt packages. Running quickpkg is straightforward: just add the names of the packages you want to archive.

For instance, to archive curl, arts and procps:

Code Listing 6: Example quickpkg usage

# quickpkg curl arts procps

The prebuilt packages will be stored in $PKGDIR/All (/usr/portage/packages/All by default). Symbolic links pointing to these packages are placed in $PKGDIR/<category>.

5. Diverting from the Official Tree

5.a. Using a Portage Tree Subset

Excluding Packages/Categories

You can selectively update certain categories/packages and ignore the other categories/packages. We achieve this by having rsync exclude categories/packages during the emerge --sync step.

You need to define the name of the file that contains the exclude patterns in the --exclude-from variable in your /etc/make.conf.

Code Listing 1: Defining the exclude file in /etc/make.conf


Code Listing 2: Excluding all games in /etc/portage/rsync_excludes


Note however that this may lead to dependency issues since new, allowed packages might depend on new but excluded packages.

5.b. Adding Unofficial Ebuilds

Defining a Portage Overlay Directory

You can ask Portage to use ebuilds that are not officially available through the Portage tree. Create a new directory (for instance /usr/local/portage) in which you store the 3rd-party ebuilds. Use the same directory structure as the official Portage tree!

Then define PORTDIR_OVERLAY in /etc/make.conf and have it point to the previously defined directory. When you use Portage now, it will take those ebuilds into account as well without removing/overwriting those ebuilds the next time you run emerge --sync.

Working with Several Overlays

For the powerusers who develop on several overlays, test packages before they hit the Portage tree or just want to use unofficial ebuilds from various sources, the app-portage/gentoolkit-dev package brings you gensync, a tool to help you keep the overlay repositories up to date.

With gensync you can update all the repositories at once, or select just a few of them. Each repository should have a .syncsource file in the /etc/gensync/ configuration directory which contains the repository location, name, ID, etc.

Suppose you have two additional repositories called java (for the in-development java ebuilds) and entapps (for the applications developed in-house for your enterprise). You can update those repositories with the following command:

Code Listing 3: Using gensync to update a few repositories

# gensync java entapps

5.c. Non-Portage Maintained Software

Using Portage with Self-Maintained Software

In some cases you want to configure, install and maintain software yourself without having Portage automate the process for you, even though Portage can provide the software titles. Known cases are kernel sources and nvidia drivers. You can configure Portage so it knows that a certain package is manually installed on your system. This process is called injecting and supported by Portage through the /etc/portage/profile/package.provided file.

For instance, if you want to inform Portage about vanilla-sources- which you've installed manually, add the following line to /etc/portage/profile/package.provided:

Code Listing 4: Example line for package.provided


D. Gentoo Network Configuration

1. Getting Started

1.a. Getting started

Note: This document assumes that you have correctly configured your kernel, its modules for your hardware and you know the interface name of your hardware. We also assume that you are configuring eth0, but it could also be eth1, wlan0, etc.

Note: This document requires you are running baselayout-1.11.11 or better.

To get started configuring your network card, you need to tell the Gentoo RC system about it. This is done by creating a symbolic link from net.lo to net.eth0 in /etc/init.d.

Code Listing 1: Symlinking net.eth0 to net.lo

# cd /etc/init.d
# ln -s net.lo net.eth0

Gentoo's RC system now knows about that interface. It also needs to know how to configure the new interface. All the network interfaces are configured in /etc/conf.d/net. Below is a sample configuration for DHCP and static addresses.

Code Listing 2: Examples for /etc/conf.d/net

# For DHCP
config_eth0=( "dhcp" )

# For static IP using CIDR notation
config_eth0=( "" )
routes_eth0=( "default via" )

# For static IP using netmask notation
config_eth0=( " netmask" )
routes_eth0=( "default gw" )

Note: If you do not specify a configuration for your interface then DHCP is assumed.

Note: CIDR stands for Classless InterDomain Routing. Originally, IPv4 addresses were classified as A, B, or C. The early classification system did not envision the massive popularity of the Internet, and is in danger of running out of new unique addresses. CIDR is an addressing scheme that allows one IP address to designate many IP addresses. A CIDR IP address looks like a normal IP address except that it ends with a slash followed by a number; for example, CIDR is described in RFC 1519.

Now that we have configured our interface, we can start and stop it using the below commands

Code Listing 3: Starting and stopping network scripts

# /etc/init.d/net.eth0 start
# /etc/init.d/net.eth0 stop

Important: When troubleshooting networking, it is recommended to set RC_VERBOSE="yes" in /etc/conf.d/rc so that you get more information about what's happening.

Now that you have successfully started and stopped your network interface, you may wish to get it to start when Gentoo boots. Here's how to do this. The last "rc" command instructs Gentoo to start any scripts in the current runlevel that have not yet been started.

Code Listing 4: Configuring a network interface to load at boot time

# rc-update add net.eth0 default
# rc

2. Advanced Configuration

2.a. Advanced Configuration

The config_eth0 variable is the heart of an interface configuration. It's a high level instruction list for configuring the interface (eth0 in this case). Each command in the instruction list is performed sequentially. The interface is deemed OK if at least one command works.

Here's a list of in-built instructions.

Command Description
null Do nothing
noop If the interface is up and there is an address then abort configuration successfully
an IPv4 or IPv6 address Add the address to the interface
dhcp, adsl or apipa (or a custom command from a 3rd party module) Run the module which provides the command. For example dhcp will run a module that provides DHCP which can be one of either dhcpcd, udhcpc, dhclient or pump.

If a command fails, you can specify a fallback command. The fallback has to match the config structure exactly.

You can chain these commands together. Here are some real world examples.

Code Listing 1: Configuration examples

# Adding three IPv4 addresses


# Adding an IPv4 address and two IPv6 addresses

# Keep our kernel assigned address, unless the interface goes
# down so assign another via DHCP. If DHCP fails then add a
# static address determined by APIPA

Note: When using the ifconfig module and adding more than one address, interface aliases are created for each extra address. So with the above two examples you will get interfaces eth0, eth0:1 and eth0:2. You cannot do anything special with these interfaces as the kernel and other programs will just treat eth0:1 and eth0:2 as eth0.

Important: The fallback order is important! If we did not specify the null option then the apipa command would only be run if the noop command failed.

Note: APIPA and DHCP are discussed later.

2.b. Network Dependencies

Init scripts in /etc/init.d can depend on a specific network interface or just net. net can be defined in /etc/conf.d/rc to mean different things using the RC_NET_STRICT_CHECKING variable.

Value Description
none The net service is always considered up
no This basically means that at least one net.* service besides net.lo must be up. This can be used by notebook users that have a WIFI and a static NIC, and only wants one up at any given time to have the net service seen as up.
lo This is the same as the no option, but net.lo is also counted. This should be useful to people that do not care about any specific interface being up at boot.
yes For this ALL network interfaces MUST be up for the net service to be considered up.

But what about net.br0 depending on net.eth0 and net.eth1? net.eth1 may be a wireless or PPP device that needs configuration before it can be added to the bridge. This cannot be done in /etc/init.d/net.br0 as that's a symbolic link to net.lo.

The answer is making your own depend() function in /etc/conf.d/net.

Code Listing 2: net.br0 dependency in /etc/conf.d/net

# You can use any dependency (use, after, before) as found in current scripts
depend_br0() {
  need net.eth0 net.eth1

For a more detailed discussion about dependency, consult the section Writing Init Scripts in the Gentoo Handbook.

2.c. Variable names and values

Variable names are dynamic. They normally follow the structure of variable_${interface|mac|essid|apmac}. For example, the variable dhcpcd_eth0 holds the value for dhcpcd options for eth0 and dhcpcd_essid holds the value for dhcpcd options when any interface connects to the ESSID "essid".

However, there is no hard and fast rule that states interface names must be ethx. In fact, many wireless interfaces have names like wlanx, rax as well as ethx. Also, some user defined interfaces such as bridges can be given any name, such as foo. To make life more interesting, wireless Access Points can have names with non alpha-numeric characters in them - this is important because you can configure networking parameters per ESSID.

The downside of all this is that Gentoo uses bash variables for networking - and bash cannot use anything outside of English alpha-numerics. To get around this limitation we change every character that is not an English alpha-numeric into a _ character.

Another downside of bash is the content of variables - some characters need to be escaped. This can be achived by placing the \ character in front of the character that needs to be escaped. The following list of characters needs to be escaped in this way: ", ' and \.

In this example we use wireless ESSID as they can contain the widest scope of characters. We shall use the ESSID My "\ NET:

Code Listing 3: variable name example

# This does work, but the domain is invalid
dns_domain_My____NET="My \"\\ NET"

# The above sets the dns domain to My "\ NET when a wireless card
# connects to an AP whose ESSID is My "\ NET

3. Modular Networking

3.a. Network Modules

We now support modular networking scripts, which means we can easily add support for new interface types and configuration modules while keeping compatibility with existing ones.

Modules load by default if the package they need is installed. If you specify a module here that doesn't have its package installed then you get an error stating which package you need to install. Ideally, you only use the modules setting when you have two or more packages installed that supply the same service and you need to prefer one over the other.

Note: All settings discussed here are stored in /etc/conf.d/net unless otherwise specified.

Code Listing 1: Module preference

# Prefer iproute2 over ifconfig
modules=( "iproute2" )

# You can also specify other modules for an interface
# In this case we prefer udhcpc over dhcpcd

modules_eth0=( "udhcpc" )

# You can also specify which modules not to use - for example you may be
# using a supplicant or linux-wlan-ng to control wireless configuration but
# you still want to configure network settings per ESSID associated with.
modules=( "!iwconfig" )

3.b. Interface Handlers

We provide two interface handlers presently: ifconfig and iproute2. You need one of these to do any kind of network configuration.

ifconfig is the current Gentoo default and it's included in the system profile. iproute2 is a more powerful and flexible package, but it's not included by default.

Code Listing 2: To install iproute2

# emerge sys-apps/iproute2

# To prefer iproute2 over ifconfig if both are installed
modules=( "iproute2" )

As both ifconfig and iproute2 do very similar things we allow their basic configuration to work with each other. For example both the below code snippet work regardless of which module you are using.

Code Listing 3: ifconfig and iproute2 examples

config_eth0=( "" )
config_eth0=( " netmask" )

# We can also specify broadcast
config_eth0=( " brd" )
config_eth0=( " netmask broadcast" )

3.c. DHCP

DHCP is a means of obtaining network information (IP address, DNS servers, Gateway, etc) from a DHCP server. This means that if there is a DHCP server running on the network, you just have to tell each client to use DHCP and it sets up the network all by itself. Of course, you will have to configure for other things like wireless, PPP or other things if required before you can use DHCP.

DHCP can be provided by dhclient, dhcpcd, pump or udhcpc. Each DHCP module has its pros and cons - here's a quick run down.

DHCP Module Package Pros Cons
dhclient net-misc/dhcp Made by ISC, the same people who make the BIND DNS software. Very configurable Configuration is overly complex, software is quite bloated, cannot get NTP servers from DHCP, does not send hostname by default
dhcpcd net-misc/dhcpcd Long time Gentoo default, no reliance on outside tools No longer maintained upstream, can be slow at times, does not daemonize when lease is infinite
pump net-misc/pump Lightweight, no reliance on outside tools No longer maintained upstream, unreliable, especially over modems, cannot get NIS servers from DHCP
udhcpc net-misc/udhcp Lightweight - smallest DHCP client around, made for embedded systems Unproven - no distro uses it by default, cannot define a timeout beyond 3 seconds

If you have more than one DHCP client installed, you need to specify which one to use - otherwise we default to dhcpcd if available.

To send specific options to the DHCP module, use module_eth0="..." (change module to the DHCP module you're using - i.e. dhcpcd_eth0).

We try and make DHCP relatively agnostic - as such we support the following commands using the dhcp_eth0 variable. The default is not to set any of them:

  • release - releases the IP address for re-use
  • nodns - don't overwrite /etc/resolv.conf
  • nontp - don't overwrite /etc/ntp.conf
  • nonis - don't overwrite /etc/yp.conf

Code Listing 4: Sample DHCP configuration in /etc/conf.d/net

# Only needed if you have more than one DHCP module installed
modules=( "dhcpcd" ) 

config_eth0=( "dhcp" )
dhcpcd_eth0="-t 10" # Timeout after 10 seconds
dhcp_eth0="release nodns nontp nonis" # Only get an address

Note: dhcpcd, udhcpc and pump send the current hostname to the DHCP server by default so you don't need to specify this anymore.

3.d. ADSL Modem

First we need to install the ADSL software.

Code Listing 5: Install the rp-pppoe package

# emerge net-dialup/rp-pppoe

Warning: baselayout-1.11.x supports PPPoE only. Hopefully future versions will support PPPoA.

Now we need to configure eth0 to be an ADSL interface and enter our username by updating /etc/conf.d/net.

Code Listing 6: Configure eth0 for ADSL in /etc/conf.d/net

config_eth0=( "adsl" )

Finally you need to define your username and password in /etc/ppp/pap-secrets.

Code Listing 7: sample /etc/ppp/pap-secrets

# The * is important
"username"  *  "password"

3.e. APIPA (Automatic Private IP Addressing)

APIPA tries to find a free address in the range by arping a random address in that range on the interface. If no reply is found then we assign that address to the interface.

This is only useful for LANs where there is no DHCP server and you don't connect directly to the internet and all other computers use APIPA.

For APIPA support, emerge net-misc/iputils or net-analyzer/arping.

Code Listing 8: APIPA configuration in /etc/conf.d/net

# Try DHCP first - if that fails then fallback to APIPA
config_eth0=( "dhcp" )
fallback_eth0=( "apipa" )

# Just use APIPA
config_eth0=( "apipa" )

3.f. Bonding

For link bonding/trunking emerge net-misc/ifenslave.

Bonding is used to increase network bandwidth. If you have two network cards going to the same network, you can bond them together so your applications see just one interface but they really use both network cards.

Code Listing 9: bonding configuration in /etc/conf.d/net

# To bond interfaces together

slaves_bond0="eth0 eth1 eth2"

# You may not want to assign an IP to the bonded interface
config_bond0=( "null" )

# Depend on eth0, eth1 and eth2 as they may require extra configuration
depend_bond0() {
  need net.eth0 net.eth1 net.eth2

3.g. Bridging (802.1d support)

For bridging support emerge net-misc/bridge-utils.

Bridging is used to join networks together. For example, you may have a server that connects to the internet via an ADSL modem and a wireless access card to enable other computers to connect to the internet via the ADSL modem. You could create a bridge to join the two interfaces together.

Code Listing 10: Bridge configuration in /etc/conf.d/net

# Configure the bridge - "man btctl" for more details
brctl_br0=( "setfd 0" "sethello 0" "stp off" )

# To add ports to bridge br0
bridge_br0="eth0 eth1"

# You need to configure the ports to null values so dhcp does not get started

config_eth0=( "null" )
config_eth1=( "null" )

# Finally give the bridge an address - you could use DHCP as well
config_br0=( "" )

# Depend on eth0 and eth1 as they may require extra configuration
depend_br0() {
  need net.eth0 net.eth1

Important: For using some bridge setups, you may need to consult the variable name documentation.

3.h. MAC Address

You don't need to emerge anything for changing the MAC address of your interface if you have sys-apps/baselayout-1.11.14 or newer and want to change to a specific MAC address. However, if you need to change to a random MAC address or have a baselayout older than the version mentioned above, you have to emerge net-analyzer/macchanger to be able to make use of this feature.

Code Listing 11: MAC Address change example

# To set the MAC address of the interface

# To randomize the last 3 bytes only

# To randomize between the same physical type of connection (e.g. fibre,
# copper, wireless) , all vendors

# To randomize between any physical type of connection (e.g. fibre, copper,
# wireless) , all vendors

# Full randomization - WARNING: some MAC addresses generated by this may
# NOT act as expected

3.i. Tunnelling

You don't need to emerge anything for tunnelling as the interface handler can do it for you.

Code Listing 12: Tunnelling configuration in /etc/conf.d/net

# For GRE tunnels
iptunnel_vpn0="mode gre remote key 0xffffffff ttl 255"

# For IPIP tunnels
iptunnel_vpn0="mode ipip remote ttl 255"

# To configure the interface
config_vpn0=( " peer" ) 

3.j. VLAN (802.1q support)

For VLAN support, emerge net-misc/vconfig.

Virtual LAN is a group of network devices that behave as if they were connected to a single network segment - even though they may not be. VLAN members can only see members of the same VLAN even though they may share the same physical network.

Code Listing 13: VLAN configuration in /etc/conf.d/net

# Specify the VLAN numbers for the interface like so
# Please ensure your VLAN IDs are NOT zero-padded
vlans_eth0="1 2"

# You can also configure the VLAN

# see for vconfig man page for more details
vconfig_eth0=( "set_name_type VLAN_PLUS_VID_NO_PAD" )
vconfig_vlan1=( "set_flag 1" "set_egress_map 2 6" )

# Configure the interface as usual
config_vlan1=( " netmask" )
config_vlan2=( " netmask" )

Important: For using some VLAN setups, you may need to consult the variable name documentation.

4. Wireless Networking

4.a. Introduction

Currently we support wireless setup either by wireless-tools or wpa_supplicant. The important thing to remember is that you configure for wireless networks on a global basis and not an interface basis.

wpa_supplicant is the best choice, but it does not support all drivers. For a list of supported drivers, read the wpa_supplicant site. Also, wpa_supplicant can currently only connect to SSID's that you have configured for.

wireless-tools supports nearly all cards and drivers, but it cannot connect to WPA only Access Points.

Warning: The linux-wlan-ng driver is not supported by baselayout at this time. This is because linux-wlan-ng have their own setup and configuration which is completely different to everyone else's. The linux-wlan-ng developers are rumoured to be changing their setup over to wireless-tools - when this happens you may use linux-wlan-ng with baselayout.

4.b. WPA Supplicant

WPA Supplicant is a package that allows you to connect to WPA enabled access points. It's setup is fairly fluid as it is still in beta - however it works fine for the most part.

Code Listing 1: Install wpa_supplicant

# emerge net-wireless/wpa_supplicant

Important: You have to have CONFIG_PACKET enabled in your kernel for wpa_supplicant to work.

Now we have to configure /etc/conf.d/net to so that we prefer wpa_supplicant over wireless-tools (if both are installed, wireless-tools is the default).

Code Listing 2: configure /etc/conf.d/net for wpa_supplicant

# Prefer wpa_supplicant over wireless-tools
modules=( "wpa_supplicant" )

# It's important that we tell wpa_supplicant which driver we should
# be using as it's not very good at guessing yet

Note: If you're using the host-ap driver you will need to put the card in Managed mode before it can be used with wpa_supplicant correctly. You can use iwconfig_eth0="mode managed" to achieve this in /etc/conf.d/net.

That was simple, wasn't it? However, we still have to configure wpa_supplicant itself which is a bit more tricky depending on how secure the Access Points are that you are trying to connect to. The below example is taken and simplified from /etc/wpa_supplicant.conf.example which ships with wpa_supplicant.

Code Listing 3: an example /etc/wpa_supplicant.conf

# The below line not be changed otherwise we refuse to work

# Ensure that only root can read the WPA configuration

# Let wpa_supplicant take care of scanning and AP selection

# Simple case: WPA-PSK, PSK as an ASCII passphrase, allow all valid ciphers

  psk="very secret passphrase"
  # The higher the priority the sooner we are matched

# Same as previous, but request SSID-specific scanning (for APs that reject
# broadcast SSID)
  ssid="second ssid"
  psk="very secret passphrase"

# Only WPA-PSK is used. Any valid cipher combination is accepted
  pairwise=CCMP TKIP
  group=CCMP TKIP WEP104 WEP40

# Plaintext connection (no WPA, no IEEE 802.1X)

# Shared WEP key connection (no WPA, no IEEE 802.1X)

# Shared WEP key connection (no WPA, no IEEE 802.1X) using Shared Key
# IEEE 802.11 authentication

# IBSS/ad-hoc network with WPA-None/TKIP
  ssid="test adhoc"
  psk="secret passphrase"

4.c. Wireless Tools

Initial setup and Managed Mode

Wireless Tools provide a generic way to configure basic wireless interfaces up to the WEP security level. While WEP is a weak security method it's also the most prevalent.

Wireless Tools configuration is controlled by a few main variables. The sample configuration file below should describe all you need. One thing to bear in mind is that no configuration means "connect to the strongest unencrypted Access Point" - we will always try and connect you to something.

Code Listing 4: Install wireless-tools

# emerge net-wireless/wireless-tools

Note: Although you can store your wireless settings in /etc/conf.d/wireless this guide recommends you store them in /etc/conf.d/net.

Important: You will need to consult the variable name documentation.

Code Listing 5: sample iwconfig setup in /etc/conf.d/net

# Prefer iwconfig over wpa_supplicant
modules=( "iwconfig" )

# Configure WEP keys for Access Points called ESSID1 and ESSID2
# You may configure up to 4 WEP keys, but only 1 can be active at
# any time so we supply a default index of [1] to set key [1] and then
# again afterwards to change the active key to [1]
# We do this incase you define other ESSID's to use WEP keys other than 1
# Prefixing the key with s: means it's an ASCII key, otherwise a HEX key
# enc open specified open security (most secure)
# enc restricted specified restricted security (least secure)
key_ESSID1="[1] s:yourkeyhere key [1] enc open"
key_ESSID2="[1] aaaa-bbbb-cccc-dd key [1] enc restricted"

# The below only work when we scan for available Access Points

# Sometimes more than one Access Point is visible so we need to
# define a preferred order to connect in
preferred_aps=( "ESSID1" "ESSID2" )

Fine tune Access Point Selection

You can add some extra options to fine-tune your Access Point selection, but these are not normally required.

You can decide whether we only connect to preferred Access Points or not. By default if everything configured has failed and we can connect to an unencrypted Access Point then we will. This can be controlled by the associate_order variable. Here's a table of values and how they control this.

Value Description
any Default behaviour
preferredonly We will only connect to visible APs in the preferred list
forcepreferred We will forceably connect to APs in the preferred order if they are not found in a scan
forcepreferredonly Do not scan for APs - instead just try to connect to each one in order
forceany Same as forcepreferred + connect to any other available AP

Finally we have some blacklist_aps and unique_ap selection. blacklist_aps works in a similar way to preferred_aps. unique_ap is a yes or no value that says if a second wireless interface can connect to the same Access Point as the first interface.

Code Listing 6: blacklist_aps and unique_ap example

# Sometimes you never want to connect to certain access points
blacklist_aps=( "ESSID3" "ESSID4" )

# If you have more than one wireless card, you can say if you want
# to allow each card to associate with the same Access Point or not
# Values are "yes" and "no"
# Default is "yes"

Ad-Hoc and Master Modes

If you want to set yourself up as an Ad-Hoc node if you fail to connect to any Access Point in managed mode, you can do that too.

Code Listing 7: fallback to ad-hoc mode

adhoc_essid_eth0="This Adhoc Node"

What about connecting to Ad-Hoc networks or running in Master mode to become an Access Point? Here's a configuration just for that! You may need to specify WEP keys as shown above.

Code Listing 8: sample ad-hoc/master configuration

# Set the mode - can be managed (default), ad-hoc or master
# Not all drivers support all modes

# Set the ESSID of the interface
# In managed mode, this forces the interface to try and connect to the
# specified ESSID and nothing else
essid_eth0="This Adhoc Node"

# We use channel 3 if you don't specify one

Important: The below is taken verbatim from the BSD wavelan documentation found at the NetBSD documentation. There are 14 channels possible; We are told that channels 1-11 are legal for North America, channels 1-13 for most of Europe, channels 10-13 for France, and only channel 14 for Japan. If in doubt, please refer to the documentation that came with your card or access point. Make sure that the channel you select is the same channel your access point (or the other card in an ad-hoc network) is on. The default for cards sold in North America and most of Europe is 3; the default for cards sold in France is 11, and the default for cards sold in Japan is 14.

Troubleshooting Wireless Tools

There are some more variables you can use to help get your wireless up and running due to driver or environment problems. Here's a table of other things you can try.

Variable Default Value Description
iwconfig_eth0 See the iwconfig man page for details on what to send iwconfig
iwpriv_eth0 See the iwpriv man page for details on what to send iwpriv
sleep_scan_eth0 0 The number of seconds to sleep before attempting to scan. This is needed when the driver/firmware needs more time to active before it can be used.
sleep_associate_eth0 5 The number of seconds to wait for the interface to associate with the Access Point before moving onto the next one
associate_test_eth0 MAC Some drivers do not reset the MAC address associated with an invalid one when they lose or attempt association. Some drivers do not reset the quality level when they lose or attempt association. Valid settings are MAC, quality and all.
scan_mode_eth0 Some drivers have to scan in ad-hoc mode, so if scanning fails try setting ad-hoc here
iwpriv_scan_pre_eth0 Sends some iwpriv commands to the interface before scanning. See the iwpriv man page for more details.
iwpriv_scan_post_eth0 Sends some iwpriv commands to the interface after scanning. See the iwpriv man page for more details.

4.d. Defining network configuration per ESSID

Sometimes, you need a static IP when you connect to ESSID1 and you need DHCP when you connect to ESSID2. In fact, most module variables can be defined per ESSID. Here's how we do this.

Note: These work if you're using WPA Supplicant or Wireless Tools.

Important: You will need to consult the variable name documentation.

Code Listing 9: override network settings per ESSID

config_ESSID1=( " brd" )
routes_ESSID1=( "default via" )

config_ESSID2=( "dhcp" )
fallback_ESSID2=( "" )
fallback_route_ESSID2=( "default via" )

# We can define nameservers and other things too
# NOTE: DHCP will override these unless it's told not too
dns_servers_ESSID1=( "" "" )
dns_search_domains_ESSID1="search.this.domain search.that.domain"

# You override by the MAC address of the Access Point
# This handy if you goto different locations that have the same ESSID
config_001122334455=( "dhcp" )
dhcpcd_001122334455="-t 10"
dns_servers_001122334455=( "" "" )

5. Adding Functionality

5.a. Standard function hooks

Four functions can be defined which will be called surrounding the start/stop operations. The functions are called with the interface name first so that one function can control multiple adapters.

The return values for the preup() and predown() functions should be 0 (success) to indicate that configuration or deconfiguration of the interface can continue. If preup() returns a non-zero value, then interface configuration will be aborted. If predown() returns a non-zero value, then the interface will not be allowed to continue deconfiguration.

The return values for the postup() and postdown() functions are ignored since there's nothing to do if they indicate failure.

${IFACE} is set to the interface being brought up/down. ${IFVAR} is ${IFACE} converted to variable name bash allows.

Code Listing 1: pre/post up/down function examples

preup() {
  # Test for link on the interface prior to bringing it up.  This
  # only works on some network adapters and requires the mii-diag
  # package to be installed.
  if mii-tool ${IFACE} 2> /dev/null | grep -q 'no link'; then
    ewarn "No link on ${IFACE}, aborting configuration"
    return 1

  # Test for link on the interface prior to bringing it up.  This
  # only works on some network adapters and requires the ethtool
  # package to be installed.
  if ethtool ${IFACE} | grep -q 'Link detected: no'; then
    ewarn "No link on ${IFACE}, aborting configuration"
    return 1

  # Remember to return 0 on success
  return 0

predown() {
  # The default in the script is to test for NFS root and disallow
  # downing interfaces in that case.  Note that if you specify a
  # predown() function you will override that logic.  Here it is, in
  # case you still want it...

  if is_net_fs /; then
    eerror "root filesystem is network mounted -- can't stop ${IFACE}"
    return 1

  # Remember to return 0 on success
  return 0

postup() {
  # This function could be used, for example, to register with a
  # dynamic DNS service.  Another possibility would be to
  # send/receive mail once the interface is brought up.
       return 0

postdown() {
  # This function is mostly here for completeness... I haven't
  # thought of anything nifty to do with it yet ;-)
  return 0

5.b. Wireless Tools function hooks

Note: This will not work with WPA Supplicant - but the ${ESSID} and ${ESSIDVAR} variables are available in the postup() function.

Two functions can be defined which will be called surrounding the associate function. The functions are called with the interface name first so that one function can control multiple adapters.

The return values for the preassociate() function should be 0 (success) to indicate that configuration or deconfiguration of the interface can continue. If preassociate() returns a non-zero value, then interface configuration will be aborted.

The return value for the postassociate() function is ignored since there's nothing to do if it indicates failure.

${ESSID} is set to the exact ESSID of the AP you're connecting to. ${ESSIDVAR} is ${ESSID} converted to variable name bash allows.

Code Listing 2: pre/post association functions

preassociate() {
  # The below adds two configuration variables leap_user_ESSID
  # and leap_pass_ESSID. When they are both configured for the ESSID
  # being connected to then we run the CISCO LEAP script

  local user pass
  eval user=\"\$\{leap_user_${ESSIDVAR}\}\"
  eval pass=\"\$\{leap_pass_${ESSIDVAR}\}\"

  if [[ -n ${user} && -n ${pass} ]]; then
    if [[ ! -x /opt/cisco/bin/leapscript ]]; then
      eend "For LEAP support, please emerge net-misc/cisco-aironet-client-utils"
      return 1
    einfo "Waiting for LEAP Authentication on \"${ESSID//\\\\//}\""
    if /opt/cisco/bin/leapscript ${user} ${pass} | grep -q 'Login incorrect'; then
      ewarn "Login Failed for ${user}"
      return 1

  return 0

postassociate() {
  # This function is mostly here for completeness... I haven't
  # thought of anything nifty to do with it yet ;-)

  return 0

Note: ${ESSID} and ${ESSIDVAR} are unavailable in predown() and postdown() functions.

6. Network Management

6.a. Network Management

If you and your computer are always on the move, you may not always have an ethernet cable or plugged in or an access point available. Also, we may want networking to automatically work when an ethernet cable is plugged in or an access point is found.

Here you can find some tools that helps you manage this.

Note: This document only talks about ifplugd, but there are alternatives you can look into like quickswitch.

6.b. ifplugd

ifplugd is a daemon that starts and stops interfaces when an ethernet cable is inserted or removed. It can also manage detecting association to Access Points or when new ones come in range.

Code Listing 1: Installing ifplugd

# emerge sys-apps/ifplugd

Configuration for ifplugd is fairly straightforward too. The configuration file is held in /etc/conf.d/ifplugd. Run man ifplugd for details on what the variables do.

Code Listing 2: sample ifplug configuration

# Define which interfaces we monitor



# Additional parameters for ifplugd for the specified interface. Note that
# the global variable is ignored, when a variable like this is set for an
# interface


Updated December 6, 2006

Summary: This is the Gentoo Handbook, an effort to centralize Gentoo/Linux information. This handbook contains the installation instructions for an Internet-based installation on AMD64 systems and parts about working with Gentoo and Portage.

Sven Vermeulen

Grant Goodyear

Roy Marples

Daniel Robbins

Chris Houser

Jerry Alexandratos

Seemant Kulleen
Gentoo x86 Developer

Tavis Ormandy
Gentoo Alpha Developer

Jason Huebel
Gentoo AMD64 Developer

Guy Martin
Gentoo HPPA developer

Pieter Van den Abeele
Gentoo PPC developer

Joe Kallar
Gentoo SPARC developer

John P. Davis

Pierre-Henri Jondot

Eric Stockbridge

Rajiv Manglani

Jungmin Seo

Stoyan Zhekov

Jared Hudson

Colin Morey

Jorge Paulo

Carl Anderson

Jon Portnoy

Zack Gilburd

Jack Morgan

Benny Chuang


Joshua Kinard

Tobias Scherbaum

Xavier Neys

Gerald J. Normandin Jr.

Donnie Berkholz

Ken Nowack

Lars Weiler

Donate to support our development efforts.

Gentoo Centric Hosting:

VR Hosted

Tek Alchemy

Tek Alchemy



Copyright 2001-2006 Gentoo Foundation, Inc. Questions, Comments? Contact us. So After having done that you should be the owner of a fine running gentoo system.
But here are the very model specific tweaks I found out.

You need the app-laptop/acer_acpi package found in portage to activate the wlan chip, the
bluetooth chip and the mail led. If you don't use gentoo, and I don't want to tell you which
distribution you use. You'll probably want to check out the official acer_acpi website
You can find a good documentation ther, but after all you just need to 'echo "enabled : 1" >> /proc/acpi/acer/mailled'
for example to switch on the mail led and so on
Your wlan won't start until you enalbed the chip, but its a good idea to switch it
off if you don't need it because you can safe energy when its disabled

As you probably want to use your batteries and not just the ac adapter power management
is needed, just follow this guide but with some modifications
You dont need to dim the display by a script cause you can activate it in bios and the display
brighness also can be changed by Fn + arrow left/right.

I was running the proprietare ati drivers once, and I don't want to remove some
maybe useful information, because I switched to the open source driver, so here you go

There also is an issue with composite and this graphic chip, it took me a long time
to get it running, so I want to show you my Device section of my xorg.conf to make it
easier for you. I had to grab the driver 8.31.5 from the ati homepage because of
some errors in the installer script of the previous versions

Section "Device"
Identifier "ATI Graphics Adapter 0"
Driver "fglrx"
Option "no_accel" "no"
Option "no_dri" "no"
Option "DynamicClocks" "on"
Option "mtrr" "on"
Option "ScreenOverlap" "0"
Option "Capabilities" "0x00000000"
Option "CapabilitiesEx" "0x00000000"
Option "VideoOverlay" "on"
Option "OpenGLOverlay" "off"
Option "CenterMode" "off"
Option "PseudoColorVisuals" "off"
Option "Stereo" "off"
Option "StereoSyncEnable" "1"
Option "FSAAEnable" "no"
Option "UseFastTLS" "2"
Option "BlockSignalsOnLock" "on"
Option "UseInternalAGPGART" "yes"
Option "ForceGenericCPU" "no"
Option "KernelModuleParm" "agplock=0"
Option "PowerState" "3"
Option "XAANoOffscreenPixmaps" "true"
BusID "PCI:1:0:0"

To get things running with the open source drivers I had to edit my xorg.conf device section to
Section "Device"
Identifier "ATI Graphics Adapter 0"
Driver "radeon"
Option "MonitorLayout" "LVDS"
Option "Accel" "on"
Option "BusType" "PCIE"
Option "ColorTiling" "on"
Option "XAANoOffscreenPixmaps" "true"
Option "RenderAccel" "on"
Option "AccelMethod" "XAA"
Option "AccelDFS" "on"
Option "DynamicClocks" "on"
Option "EnablePageFlip" "on"
BusID "PCI:1:0:0"

If you can't get it running you can of course grab my xorg.conf if you think
you have less troubles with it.

I guess you want to use your hotkeys, and I use them too, I once used xbindkeys to get them running, but
this program seems to be a bit buggy and I was not able to insolate the error, so you probably would want
to use your desktop manager specific hotkey manager to grab your hotkeys.

I use a script to check if I got mails, maybe you want to use mutt or some other very powerful mail client
but I use evolution and you don't have the possibility to check mails without running this damn fat ram
eating program to check mails, so I fetched fetchmail and wrote this script
At first you probably would like to be able to access your mailled as user, I addet
this script to my startup

# Copyright 1999-2007 Gentoo Foundation
# Distributed under the terms of the GNU General Public License v2
# $Header: $

start() {
chgrp acer /proc/acpi/acer/mailled
chmod 664 /proc/acpi/acer/mailled

stop() {
chgrp acer /proc/acpi/acer/mailled
chmod 664 /proc/acpi/acer/mailled

restart() {
chgrp acer /proc/acpi/acer/mailled
chmod 664 /proc/acpi/acer/mailled

At next add it to your runlevels, so it is executed even if you hibernate and on startub
"rc-upadate add mailled default batter"
don't forget to make it executable

At next we need a script to check if there are mails and switch the led on or off
if there are mails, or not. You can pick mine here


if [ $1 ]
if [[ $1 == "--test" ]]
if [[ $2 == "on" ]]
echo "enabled : 1" > /proc/acpi/acer/mailled 2> /dev/null
elif [[ $2 == "off" ]]
echo "enabled : 0" > /proc/acpi/acer/mailled 2> /dev/null
echo "Usage: --test (on/off)"
echo "defaults to check mails"
if /usr/bin/fetchmail -c --ssl -s --username=YOURUSERNAMEHERE -p POP3 YOURPOPADRESS > /dev/null
echo "enabled : 1" > /proc/acpi/acer/mailled 2> /dev/null
echo "enabled : 0" > /proc/acpi/acer/mailled 2> /dev/null

You can check the functionality by typing "./ --test on"

At next you need a file to store your password in, I used fetchmail's default
~/.netrc with the password


do NOT FORGET to change it to be only readable by you, and ONLY you, so not everyone
can get access to your mail

At next you just need to add this script to your favorite cron daemon to check your
mail periodically

"crontab -e"

*/2 * * * * /

this will check your mail every 2nd Minute

Don't forget to switch your mail led off on pressing the mail button
I hope I could help you